

NorthMet Project

Geotechnical Data Package Volume 3 – Mine Site Stockpiles

Version 4

Issue Date: November 25, 2014

This document was prepared for Poly Met Mining Inc. by Barr Engineering Co. and Golder Associates Inc.

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Contents

Table of Contents

Acr	onym	ns and Abbreviations	iii
1.0		Introduction	1
	1.1	Outline	1
2.0		Regulatory Basis	3
3.0		Existing Site Conditions	6
	3.1	Existing Site Data	6
	3.2	Site Conditions for Category 1 Waste Rock Stockpile	9
	3.3	Site Conditions for Category 2/3 Waste Rock Stockpile	11
	3.4	Site Conditions for Category 4 Waste Rock Stockpile	13
	3.5	Site Conditions for Ore Surge Pile	15
	3.6	Site Conditions Summary	16
4.0		Physical Properties of Materials	18
	4.1	On-Site Soils	18
	4.2	Waste Rock and Ore	19
5.0		Stockpile Analysis and Design Inputs	21
	5.1	Climatic Data	21
	5.2	Stockpile Geometry	21
	5.3	Stockpile Liner Systems and Foundations	22
	5.4	Permanent Stockpile Development Sequence	22
	5.5	Temporary Stockpile Development Sequence	22
		5.5.1 Underdrain System	24
		5.5.2 Liner System	25
	5.6	Stockpile Reclamation	25
6.0		Stockpile Analysis and Design Outcomes	26
	6.1	Stockpile Stability	26
	6.2	Foundation Settlement	28
	6.3	Liner Survivability	28
7.0		Certification	29
8.0		Revision History	30
9.0		References	31

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page ii

List of Tables	. 32
List of Attachments	. 32

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page iii

Acronyms and Abbreviations

	Stands For
Golder	Golder Associates Inc.
IFC	Issued for Construction
LLDPE	linear low density polyethylene
PGA	peak ground acceleration
Project	NorthMet Project
SPT	standard penetration test
USCS	Unified Soil Classification System
USFS	U.S. Forest Service

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 1

1.0 Introduction

This Geotechnical Data Package – Volume 3 presents the geotechnical evaluations performed by Golder Associates Inc. (Golder) in support of the NorthMet Project (Project) waste rock stockpile designs presented in the Rock and Overburden Management Plan (Reference (1)) and the Water Management Plan – Mine Site (Reference (2)). This information is intended for use in preparing the Environmental Impact Statement, and to support Project permitting.

The overall plan for management of waste rock is to classify rock by its reactivity and place it in one of three stockpiles based on that classification. The lowest reactivity stockpile, Category 1, is a permanent stockpile. A groundwater containment system will be constructed to capture drainage from the Category 1 Waste Rock Stockpile (see Section 2.1.2 of Reference (1)), and the stockpile will be progressively reclaimed with an engineered geomembrane cover system (see Section 3.0 of Reference (3)). The two higher reactivity stockpiles, Category 2/3 and Category 4, are temporary stockpiles, and waste rock from these stockpiles will be relocated to the East Pit after mining ceases in the East Pit. Engineered liner systems will be constructed beneath the temporary stockpiles to capture drainage (see Section 2.1.3 of Reference (1)).

The Mine Site exploration drilling locations, soil borings, and geophysical testing locations used for stockpile foundation design are shown in Attachment A. The majority of the relevant geotechnical data has been collected from the accessible highland areas. Because the surface rights over most of the Mine Site are owned by the U.S. Forest Service (USFS), further access is restricted until completion of the proposed land exchange with the USFS. A Phase II Geotechnical Investigation Work Plan will be developed during permitting to provide the basis to finalize the stockpile Issued for Construction (IFC) designs. It is Golder's opinion that the existing geotechnical database, in combination with knowledge of the regional surficial and bedrock geology and the conservative assumptions used to design the waste rock stockpile slopes and foundations, is sufficient to support a basic level engineering design and permitting for the proposed waste rock stockpiles. It is anticipated that any IFC level design modifications occurring after the current designs are finalized will not result in substantial modifications to the proposed stockpile geometry, design methodologies or performance.

1.1 Outline

This Geotechnical Data Package – Volume 3 presents the analyses and assumptions upon which recommendations are provided for the waste rock stockpile foundation preparation and liner system designs, and presents the methodology used to evaluate the slope stability of the recommended designs. The outline of this document is:

Section 1 Introduction

Section 2 Regulatory basis

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 2

Section 3 Existing conditions

Section 4 Physical properties of the materials

Section 5 Stockpile analysis and design inputs

Section 6 Stockpile analysis and design outcomes

Section 7 Certification

This document may evolve through the environmental review, permitting, operating and closure phases of the Project. A Revision History is included at the end of the document.

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 3

2.0 Regulatory Basis

Requirements for stockpile design and reactive mine waste are included in the Nonferrous Metallic Mineral Mining Minnesota Administrative Rules, MNDNR Rules parts 6132.2400 and 6132.2200, respectively. Variances from these rules or alternative plans require review and approval by the MNDNR. Minnesota Rules, part 6132.2400 states that Storage Piles (a.k.a. Stockpiles) must be designed and constructed to minimize hydrologic impacts, enhance the survival and propagation of vegetation, be structurally sound, control erosion, promote progressive reclamation, and recognize the conservation of mineral resources. Specific regulatory requirements for Stockpiles as excerpted from Minnesota Rules, part 6132.2400 are:

- A. General design: All storage piles shall be designed and constructed according to the standards in subitems (1) to (4).
- (1) When mine waste is deposited on areas with unstable foundations such as peat, muskeg, bedded lacustrine deposits, karst topography, active seismic and flood zones, and areas above or within a mine, a professional engineer, registered in this state and proficient in the design, construction, operation, and reclamation of facilities on unstable foundations, shall examine the foundation and design the storage piles to ensure stability.
- (2) Practices such as the use of vegetated buffer strips, hay bale dikes, silt fences, or settling basins shall be used to control erosion.
- (3) Rills or gullies shall be observed to determine dominant runoff flow paths, which shall be stabilized to control runoff.
- (4) Storage piles containing reactive mine waste must also comply with the requirements of Minnesota Rules, part <u>6132.2200</u>.
- B. Rock storage piles: The final exterior slopes of lean ore, waste rock, and leached ore storage piles shall consist of benches and lifts as follows:
- (1) No lift shall exceed 40 feet in height;
- (2) No bench shall be less than 30 feet, measured from the crest of the lower lift to the toe of the next lift;
- (3) The sloped area between benches shall be no steeper than the angle of repose; and
- (4) When vegetation is required under Minnesota Rules, part <u>6132.2700</u>, subpart 2, item A, subitem (13), the sloped areas between benches shall be prepared to support vegetation.
- C. Surface overburden: Surface overburden shall be disposed of according to subitems (1) and (2).

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 4

- (1) When surface overburden is generated, it shall be placed in layers on the completed tops and benches of lean ore and waste rock storage piles to enhance reclamation potential.
- (2) If no completed tops or benches are available, or if such sites are not within economic haul distances of surface stripping activities, surface overburden storage piles shall be created so that the final exterior slopes shall consist of benches and lifts as follows:
 - (a) No lift shall exceed 40 feet in height;
 - (b) No bench width shall be less than 30 feet wide, measured from the crest of the lower lift to the toe of the next lift;
 - (c) The sloped area between benches shall be no steeper than 2.5:1; and
 - (d) Runoff water shall either be temporarily stored on benches or removed by drainage control structures.
- D. Mixed storage piles: Lean ore and waste rock shall not be used to cover surface overburden storage piles to avoid compliance with sloping and vegetation requirements. This shall not preclude the abutting of lean ore or waste rock storage piles with surface overburden storage piles or the placement of lean ore or waste rock lifts on top of surface overburden pads or lifts.
- E. Alternative design: Based on acceptable research, the commissioner shall approve other measures that satisfy subpart 1.

Minnesota Rules, part 6132.2200 Reactive Mine Waste applicable to Stockpile design require that Reactive Mine Waste shall be mined, disposed of, and reclaimed to prevent the release of substances that result in the adverse impacts on natural resources. A reactive mine waste storage facility must be designed by professional engineers registered in Minnesota proficient in the design, construction, operation, and reclamation of facilities for the storage of reactive mine waste, to either:

- (1) Modify the physical or chemical characteristics of the mine waste, or store it in an environment, such that the waste is no longer reactive; or
- (2) During construction to the extent practicable, and at closure, permanently prevent substantially all water from moving through or over the mine waste and provide for the collection and disposal of any remaining residual waters that drain from the mine waste in compliance with federal and state standards.

The State of Minnesota requires submittal, review, and state approval of a quality control/quality assurance program for liner systems prior to construction. In addition, the State of Minnesota requires submittal of a construction documentation report that summarizes the details of the facility construction and presents the results of the quality

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 5

assurance testing. Quality assurance testing is most often performed by the facility design engineer and a qualified independent testing laboratory. Quality assurance for facilities like the stockpile liners typically includes:

- Density testing of compacted structural fill materials.
- Peel and shear strength testing of seems in the geomembrane liner and/or cover systems.
- Overall confirmation of materials compliance with specifications.
- Construction surveying to confirm facility line and grade compliance with specifications.
- Maintenance of construction observation records and a photographic record of construction activities.
- Documentation of any variation from agency approved plans and specifications and the basis by which the variation is deemed acceptable to the facility design engineer.

Permit issuance for the facility will depend on compliance with an approved QA/QC plan. A construction QA/QC plan will be developed during permitting and submitted for agency approval.

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 6

3.0 Existing Site Conditions

3.1 Existing Site Data

The existing site conditions were evaluated using the site data summarized below:

- boring logs from a drilling program conducted by Barr in March 2005
- data from a Phase I field investigation conducted by Golder in April 2006
- data from a geotechnical investigation conducted by Barr in January 2008
- data from an overburden geotechnical investigation conducted by Barr in February 2010
- depth to bedrock point data obtained prior to March 2005, provided by Poly Met Mining Inc., based on electrical resistivity survey geophysics, geotechnical borings, and exploration borings
- Wetland delineation at the Mine Site conducted by Barr in 2006 (Reference (4))

Geotechnical boring locations by Barr (2005 and 2008) and test trench locations by Golder (2006) are shown in Attachment A.

Barr conducted a monitoring well installation program in March 2005. Eleven borings were completed as summarized in Table 3-1. The borings were advanced by WDC Exploration & Wells using rotasonic drilling methods. The advanced borings indicated bedrock depths ranging from 4 feet to more than 28.5 feet. The boring logs from the 2005 well installation program are included in Attachment B.

Golder conducted a Phase I geotechnical field and laboratory investigation in April 2006 to evaluate the subsurface conditions within the proposed stockpile footprints. The investigation program consisted of fifteen (15) test trenches (G06-TP1 through G06-TP15) excavated to depths ranging between 3.5 and 20 feet. Test trenches were excavated using a John Deere 690 ELC trackhoe operated by Radotich Enterprises, LLC. The test trenches were extended either to bedrock refusal or 20 feet, which was the limit of the trackhoe reach. Bedrock was encountered in 13 of the 15 test trenches at depths ranging from 3.5 to 15 feet. The Phase I geotechnical investigation report is included as Attachment C.

Barr conducted a rotasonic drilling program in January 2008 as a part of the Overburden Characterization Plan in support of the EIS. Twenty-four borings were advanced (RS-01B to RS-20A). Twenty-two borings were completed using an 8-inch diameter rotasonic core with a miniature all-terrain rig operated by Boart Longyear Company. The depth at which bedrock was encountered ranged from 5 to 33 feet, as summarized in Table 3-1. In addition, two borings were completed using a hollow stem hand auger. The hand auger borings

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 7

encountered boulder refusal at 0.5 and 2.0 feet, respectively. Borehole logs from the January 2008 geotechnical investigation conducted by Barr and the accompanying in-laboratory material test data are included as Attachment D.

Barr conducted a standard penetration test (SPT) and pressure meter test program in February 2010 as a part of overburden characterization in support of the DEIS. Four SPT borings and offset hollow stem auger borings for pressure meter testing and sample recovery were advanced (J003, J010, J027 and J037). Borings and testing were completed by American Engineering Testing, Inc. Borehole logs, pressure meter test data and soil test data from the February 2010 geotechnical investigation conducted by Barr are included as Attachment E. Barr (2010) data are generally consistent with findings from previous investigations.

Table 3-1 Depth to Bedrock Data from Geotechnical Borings by Barr (2005, 2008) and Test Trench Investigations by Golder (2006)

Barr (2005)		Golder	(2006)	Barr (2008)		
Boring Number	Bedrock Depth Below Existing Grade (feet)	Boring Number	Bedrock Depth Below Existing Grade (feet)	Boring Number	Bedrock Depth Below Existing Grade (feet)	
MW-05-02	5.0	GATP-06-1	> 20	RS-01B	20.5	
MW-05-08	> 28.5	GATP-06-2	13.0	RS-03	22.0	
MW-05-09	12.5	GATP-06-3	15.0	RS-04	25.0	
SB-05-01	15.0	GATP-06-4	13.5	RS-05A	13.0	
SB-05-03	16.0	GATP-06-5	14.0	RS-05B	> 5.0	
SB-05-04	15.0	GATP-06-6	> 20	RS-06A	> 21.0	
SB-05-05	8.0	GATP-06-7	3.5	RS-06R	21.0	
SB-05-06	14.5	GATP-06-8	4.5	RS-07	11.0	
SB-05-07	13.0	GATP-06-9	8.5	RS-07R	9.5	
SB-05-10	4.0	GATP-06-10	8.0	RS-08A	11.0	
SB-05-10A	6.0	GATP-06-11	6.0	RS-09	8.0	
		GATP-06-12	5.0	RS-10	14.0	
		GATP-06-13	9.0	RS-11	33.0	
		GATP-06-14	3.5	RS-12	22.0	
		GATP-06-15	11.5	RS-13	8.0	
				RS-14A	5.0	
				RS-14B	5.0	
				RS-15A-E	> 0.5	

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 8

Barr (Barr (2005)		Golder (2006)		(2008)
Boring Number	Bedrock Depth Below Existing Grade (feet)	Boring Number	Bedrock Depth Below Existing Grade (feet)	Boring Number	Bedrock Depth Below Existing Grade (feet)
				RS-16A-C	> 2.0
				RS-17A	> 8.0
				RS-17B	11.2
				RS-18A	8.0
				RS-19A	9.0
				RS-20A	6.5

Note: Excludes Barr 2010 data; Barr 2010 borings were terminated above bedrock or at auger refusal. Auger refusal on cobble, boulder or bedrock was not confirmed.

The site exploration drilling database, test pit logs, drilling logs from soil borings and monitoring wells, and geophysics data were used to develop an estimated depth to bedrock isopach map presented in Attachment A.

Barr completed additional rotasonic borings in 2011 and 2012 for monitoring well installations. This data has not been used for the analyses presented herein and is therefore not attached, but will be considered during preparation of IFC designs.

Collected soil samples from the Golder (2006) and Barr (2008 and 2010) field programs were classified using the Unified Soil Classification System (USCS). In-laboratory material classification tests were performed in accordance with ASTM methodologies to obtain index properties of the samples recovered from the test trenches and boreholes, to confirm field classifications, and for use in developing correlations with engineering properties of the soils encountered. In-laboratory tests conducted on subgrade materials sampled during these field programs included the following:

- Sieve Analysis ASTM C117/C136 (Golder, 2006 and Barr, 2008);
- Atterberg Limits ASTM D4318 (Golder, 2006 and Barr, 2008);
- Natural Moisture Content ASTM (Golder, 2006 and Barr, 2008);
- Standard Proctor Compaction ASTM D698 (Golder, 2006);
- Consolidated-Undrained (CU) Triaxial Compression ASTM D4767 (Golder, 2006);
- Falling Head Flexible-Wall Permeability Testing ASTM D5084 (Golder, 2006); and

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 9

• One-Dimensional Consolidation Testing – ASTM D2435 (Golder, 2006).

Copies of test reports for the in-laboratory material testing are provided in Attachment C, Attachment D, and Attachment E.

3.2 Site Conditions for Category 1 Waste Rock Stockpile

The Category 1 Waste Rock Stockpile footprint encompasses 508 acres during operations, and 526 acres reclaimed. For the Category 1 Waste Rock Stockpile and for all other stockpiles some discrepancies may exist between footprint areas reported herein relative to footprint areas reported in other documents. This is the result of varying document preparation dates and/or versions. No effort has been made to align document submittal dates. Hence, some footprint size variations between versions can be expected.

Wetland delineation within the Category 1 Waste Rock Stockpile footprint is presented in Attachment A. Geotechnical classification of subsurface soils within the vicinity of the Category 1 Waste Rock Stockpile footprint is based on the borehole logs (Barr 2005, 2008 and 2010) and test pit logs (Golder, 2006). Geotechnical borings and test pits within or in the vicinity of the Category 1 Waste Rock Stockpile are summarized in Table 3-2. Additional depth to bedrock information in the vicinity of the Category 1 Waste Rock Stockpile is presented in Attachment F.

Table 3-2 Category 1 Waste Rock Stockpile Boring and Test Pits

Borehole/Test Pit	Location ⁽¹⁾	Bedrock Depth (feet)	Soil types
MW-05-09	WL/HL	12.5	0.5 feet topsoil; 1.5 feet of sand (w/ 5-10% gravel); 5 feet of silty sand (w/ <40% cobbles and boulders); 1.5 feet sand; 4 feet silty sand (trace gravel and cobbles)
SB-05-04	WL	15	2 feet of peat; 5.5 feet of clayey silt; 1 feet of silty clay; 1.5 feet of sandy silt (w/ 10% cobbles); 5 feet of silty sand (w/ 10-20% coarse gravel and cobbles)
SB-05-10	WL/HL	4.0	1 feet peat; 3 feet of silty sand (with 5-10% gravel and cobbles)
GATP-06-04	WL	13.5	0.5 feet topsoil; 13 feet of silty sand (mixed w/ gravel and cobbles)
GATP-06-05	HL	14.0	0.5 feet topsoil; 3.5 feet of lean clay (sandy w/ 15-20% gravel), 2 feet of silty sand (w/ 30-45% gravel), 8 feet of silty sand.
GATP-06-06	HL	>20	0.5 feet of topsoil; 14.5 feet of silty sand (mixed w/ gravel, cobbles and boulders); 5 feet layer of sandy silt

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 10

Borehole/Test Pit	Location ⁽¹⁾	Bedrock Depth (feet)	Soil types
RS-15A-E	HL	>0.5	Peat over sandy silt (refusal on boulder)
RS-16A-C	HL	>2.0	Silty sand (refusal on boulder)
J003	WL		2.5 feet peat and organic silt; 3.6 feet coarse alluvium; 21.0 feet silty sand w/gravel
J010	HL		2.3 feet fill; 15.9 feet silty sand w/gravel; 0.5 feet obstruction (possible bedrock)
J027	WL		7.0 feet peat; 0.7 feet organic silt; 16.9 feet silty sand w/gravel (w/ apparent cobbles)
J037	HL		0.5 feet topsoil; 12.0 feet sandy silt and silty sand w/gravel; 0.4 feet obstruction (possible bedrock)

 $^{(1) \}hspace{1cm} WL-wetland, \hspace{0.1cm} HL-highland, \hspace{0.1cm} WL/HL-wetland/highland \hspace{0.1cm} boundary$

Results from the in-laboratory material classification testing on the samples collected during Golder (2006) and Barr (2008 and 2010) geotechnical investigations are summarized in Table 3-3.

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 11

Table 3-3 Geotechnical Classification Results for Category 1 Waste Rock Stockpile Soils

Sample	USCS Class.	% Gravel	% Sand	% Fines	LL ⁽¹⁾	PL ⁽¹⁾	PI ⁽¹⁾
TP#4, Sample #1, 0.5' to 4.5'	SM	8.0	60.7	31.3	7	7	0
TP#4, Sample #2, 4.5' to 13.5'	SM w/ little gravel	11.0	49.7	39.3	n/a	n/a	n/a
TP#5, Sample #1, 0.5' to 4.0'	CL	13.0	35.6	51.4	25	16	9
TP#5, Sample #1, 6.0' to 14'	SM	1.0	52.0	47.0	n/a	n/a	n/a
TP#6, Sample #2, 15' to 20'	ML sandy	0.0	48.3	51.7	n/a	n/a	n/a
RS-15A-E, 0' to 0.5'	ML sandy w/organics	1.0	46.3	52.7	NP	NP	NP
RS-16A-C. 0' to 2.0'	Silty Sand (SM)	0.4	68.4	31.2	NP	NP	NP
J003, 4.5' to 6.0'	CL-ML/CL	0.0	32.6	67.4	NT	NT	NT
J003, 19.5' to 21.0'	SC	12.0	53.1	34.9	NT	NT	NT
J010, 4.5' to 6.0'	SM	13.7	55.5	30.8	NP	NP	NP
J010, 9.5' to 11.0'	SM	12.9	55.3	31.8	NP	NP	NP
J027, 12.0' to 13.5'	SM	28.0	50.9	21.1	NP	NP	NP
J027, 22.0' to 23.5'	SM	8.3	60.5	31.2	NP	NP	NP
J037, 9.5' to 11.0'	SM	18.7	48.7	32.6	NP	NP	NP

⁽¹⁾ NP – non-plastic soil; NT – not tested for plasticity

Borings advanced in the vicinity of and within the footprint of the Category 1 Waste Rock Stockpile indicate bedrock depths ranging from 4 feet to over 20 feet below the surface (Table 3-2). On the basis of the bedrock isopach map shown in Attachment A, depth to bedrock may be somewhat greater in the central and southwestern portions of the stockpile footprint. Soils in the highland areas are glacial tills in origin and typically consist of sandy silts and silty sands with varying amounts of coarser material and occasional layers of sandy clays. Existing data indicates that lowland areas contain horizons of glacial, alluvial and lacustrine deposits. The upper soil horizons in the lowland deposits contain relatively finer grained soils, e.g., peat, organic clays and silts.

3.3 Site Conditions for Category 2/3 Waste Rock Stockpile

The Category 2/3 Waste Rock Stockpile area encompasses 180 acres. Wetland delineation within the Category 2/3 Waste Rock Stockpile footprint is presented in Attachment A. Geotechnical classification of subsurface soils within the Category 2/3 Waste Rock Stockpile footprint is based on the test pit samples collected by Golder in 2006 and the rotasonic drill testing by Barr in January 2008. Geotechnical borings and test pits in the vicinity (within approximately 100 feet) of the Category 2/3 Waste Rock Stockpile footprint are summarized

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 12

in Table 3-4. Additional depth to bedrock information in the vicinity of the Category 2/3 Waste Rock Stockpile is presented in Attachment F.

Table 3-4 Category 2/3 Waste Rock Stockpile Borings

Borehole	Location ⁽¹⁾	Bedrock Depth (feet)	Soil types
SB-05-01	HL/WL	15.0	4 feet topsoil (low plast. clay w/ 25% coarse fraction); 1 feet of silty clay; 3 feet of silty clay w/ organics; 7 feet silty clay w/ organics (rocky last 5 feet before bedrock)
RS-11	WL	33	9.5 feet peat; 7.5 feet silty sand (w/ gravel, cobbles and organics); 8 feet gravelly sand with silt (w/ cobbles); 8 feet sand to silty sand (w/ gravel, cobbles and boulders)
RS-17A	HL	>8	1 feet topsoil; 3.5 feet gravelly silty sand; 1.5 feet silty gravel w/ sand; 1 feet silty sand w/ gravel (refusal on boulder)
RS-17B	HL	11.2	1 feet topsoil; 3.5 feet gravelly silty sand; 1.5 feet silty gravel w/ sand; 1 feet silty sand w/ gravel; 1 feet boulder; 3.2 feet sand (w/ silt and gravel)
GATP-06-8	HL	4.5	2 feet silty sand (w/ little gravel); 2.5 feet sand and gravel (trace silt)
GATP-06-9	HL	8.5	0.5 feet of topsoil; 3.5 feet of silty sand (mixed w/ little gravel, cobbles and boulders); 4.5 feet sand and gravel (little silt, few cobbles)
GATP-06-10	HL	8.0	0.5 feet of topsoil; 3.5 feet of silty sand (w/ little gravel, few cobbles); 2.0 feet sand and gravel; 2 feet silty sand (some gravel)
GATP-06-11	HL	6.0	0.5 feet topsoil; 5.5 feet of silty sand (mixed w/ gravel and cobbles)
GATP-06-12	HL	5.0	0.5 feet topsoil; 4.5 feet of silty sand (mixed w/ gravel and cobbles)
GATP-06-13	HL	9.0	0.5 feet of topsoil; 8.5 feet of silty sand (w/ gravel, few cobbles and boulders);
GATP-06-14	WL	3.5	0.5 feet of topsoil; 3.0 feet of silty sand (w/ little gravel, few cobbles);
GATP-06-15	HL	11.5	1.0 feet of topsoil; 3.0 feet of silty sand (w/ gravel); 7.5 feet of silty sand (w/ little gravel, cobbles and boulders);

⁽¹⁾ WL – wetland, HL – highland, WL/HL – wetland/highland boundary

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 13

Results from the in-laboratory material classification testing on the samples collected during the Barr (2008) geotechnical investigation are summarized in Table 3-5.

Table 3-5 Geotechnical Classification Results for Category 2/3 Waste Rock Stockpile Soils

		%	%	%			
Sample	USCS Class.	Gravel	Sand	Fines	LL ⁽¹⁾	PL ⁽¹⁾	PI ⁽¹⁾
TP#8, Sample #2, 2' to 4.5'	SP w/ gravel	40	58.2	1.8	n/a	n/a	n/a
TP#11, Sample #2, 3' to 6'	SM w/ little gravel	10	66.1	23.9	n/a	n/a	n/a
TP#13, Sample #2, 4' to 9'	SM w/ gravel	23	51	26	10	8	2
TP#14, Sample #2, 0.5' to 3.5'	SM	0	53.2	46.8	n/a	n/a	n/a
TP#15, Sample #2, 4' to 11.5'	SM w/ little gravel	12	49.2	38.8	n/a	n/a	n/a
RS-11, 9.5' to 10'	SM w/ gravel	42.8	43.1	14.1	NP	NP	NP
RS-11. 17' to 25'	SP-SM (gravelly)	34.8	59.0	6.2	NP	NP	NP
RS-11. 25' to 28'	SP-SM (gravelly)	23.0	66.8	10.2	NP	NP	NP
RS-11, 28' to 31'	SM w/ gravel	34.2	46.8	19.0	NP	NP	NP
RS-11. 31' to 33'	SM w/ gravel	39.1	46.4	14.5	NP	NP	NP
RS-17, 2.5' to 4.5'	SM (gravelly)	30.2	37.0	32.8	16.2	15.5	0.7
RS-17, 4.5' to 6'	GM w/ sand	43.8	43.0	13.2	NP	NP	NP
RS-17, 6' to 7'	SM (gravelly)	19.9	40.0	40.1	NP	NP	NP

⁽¹⁾ NP – non-plastic soil

Borings advanced within the footprint of the Category 2/3 Waste Rock Stockpile indicate bedrock depths ranging from 3.5 to 33 feet below the surface (Table 3-4) Noting that the RS-11 boring, which encountered the greatest depth of overburden, is located north of the northwestern stockpile boundary; the maximum soil depth within the Category 2/3 Waste Rock Stockpile footprint is estimated at 22 feet using the depth to bedrock isopach map (Attachment A). Soils in the highland areas typically consist of sands and gravel with varying amount of silt. Lowland areas are anticipated to contain surficial peat, fine grained soils and organics, underlain by glacial and alluvial deposits.

3.4 Site Conditions for Category 4 Waste Rock Stockpile

The Category 4 Waste Rock Stockpile area encompasses 57 acres. Wetland delineation within the Category 4 Waste Rock Stockpile footprint is presented in Attachment A. Geotechnical classification of subsurface soils within the Category 4 Waste Rock Stockpile footprint is based on the rotasonic drilling program by Barr in January 2008. Borings developed within the immediate vicinity of the Category 4 Waste Rock Stockpile footprint

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 14

(i.e., less than 150 feet from the stockpile) are summarized in Table 3-6. Additional depth to bedrock information in the vicinity of the Category 4 Waste Rock Stockpile is presented in Attachment F.

Table 3-6 Category 4 Waste Rock Stockpile Test Pits

T	1 (1)	Bedrock Depth	0.11.6
Test Pit	Location ⁽¹⁾	(feet)	Soil types
RS-05A	HL	13.0	10 feet of silty sand w/ gravel; 3 feet of silty gravel
RS-05B	HL	>5	5 feet of silty sand w/ gravel
RS-09	HL	8.0	1 feet topsoil; 6 feet of silty sand (w/ gravel); 1 feet of sandy lean clay
RS-12	HL	22.0	2 feet sandy silt w/ organics; 3.5 feet of fine sand (w/ cobbles); 16.5 feet of silty sand (w/ varying amount of gravel and cobbles)

⁽¹⁾ WL – wetland, HL – highland, WL/HL – wetland/highland boundary

Results from the in-laboratory material classification testing on the highland samples collected during the Barr (2008) geotechnical investigation are summarized in Table 3-7.

Table 3-7 Geotechnical Classification Results for Category 4 Waste Rock Stockpile Soils

		%	%	%			
Sample	USCS Class.	Gravel	Sand	Fines	LL ⁽¹⁾	PL ⁽¹⁾	PI ⁽¹⁾
RS-05A, 6' to 11.5'	SM w/ gravel	37.9	36.2	25.9	NP	NP	NP
RS-05A, 10' to 11.5'	GM w/ sand	64.3	23.1	12.6	NP	NP	NP
RS-05A, 11.5' to 13'	GM w/ sand	61.0	24.0	15.0	14.3	13.1	1.2
RS-09, 1' to 7'	SM w/ gravel	31.7	50.2	18.1	NP	NP	NP
RS-12, 5.5' to 10'	SM w/ gravel	21.7	55.3	23.0	NP	NP	NP
RS-12, 10' to 15'	SM w/ gravel	26.0	53.3	20.7	NP	NP	NP

⁽¹⁾ NP – non-plastic soil

Borings advanced in the vicinity or within the footprint of the Category 4 Waste Rock Stockpile indicate bedrock depths between 5.0 and 22.0 feet below the surface (Table 3-6) with the maximum depth of 26 feet indicated by the depth to bedrock map (Attachment A) As indicated in Table 3-6, the Category 4 Stockpile is primarily founded upon highland soils, which typically consist of sands and gravels with varying amounts of silt, cobbles and boulders. Because the soil samples were collected only in the highland areas at the northeastern and the southwestern end of the stockpile, they may differ from foundation soils

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 15

at other locations within the Category 4 Waste Rock Stockpile footprint, especially in wetland areas.

3.5 Site Conditions for Ore Surge Pile

The Ore Surge Pile encompasses 31 acres. Wetland delineation within the Ore Surge Pile footprint is presented in Attachment A. Geotechnical classification of subsurface soils within the Ore Surge Pile footprint is based on the rotasonic investigation completed by Barr in 2008. Geotechnical borings and test pits within the Ore Surge Pile are summarized in Table 3-8. Additional depth to bedrock information in the vicinity of the Ore Surge Pile is presented in Attachment F.

Table 3-8 Ore Surge Pile Borings

Borehole/Test Pit	Location ⁽¹⁾	Bedrock Depth (feet)	Soil types
MW-05-02	HL	5.0	5.0 feet of sandy clay
RS-08A	HL	11.0	11.0 feet of silty sand (w/ gravel)
RS-18A	HL	8.0	0.5 feet topsoil; 2.5 feet of silty or silty clay (w/ 10% gravel); 2 feet of clayey sand (w/ gravel); 3 feet gravelly silty sand
RS-19A	HL	9.0	1 feet surface boulder; 2.5 feet silty sand (w/ little gravel); 2.5 feet silty sand w/ gravel; 3 feet gravel and cobbles with sand
RS-20A	HL	6.5	2.5 feet silty sand (fine grained); 4 feet of silty sand (mixed w/ gravel, cobbles and boulders)

⁽¹⁾ WL – wetland, HL – highland, WL/HL – wetland/highland boundary

Results from the in-laboratory material classification testing on the highland samples collected during the Barr (2008) geotechnical investigation are summarized in Table 3-9.

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 16

Table 3-9 Geotechnical Classification Results for Ore Surge Pile Soils

		%	%	%			
Sample	USCS Class.	Gravel	Sand	Fines	LL ⁽¹⁾	PL ⁽¹⁾	PI ⁽¹⁾
RS-08A, 5' to 11'	SM w/ gravel	30.5	42.5	27.0	NP	NP	NP
RS-18, 0' to 5'	SC-SM w/ gravel	26.1	44.1	29.8	23.1	17.1	6
RS-18. 5' to 8'	SM w/ gravel	31.6	47.1	21.3	NP	NP	NP
RS-19. 1.5' to 3.5'	SM w/ little gravel	13.0	47.0	40.0	19.1	17.8	1.3
RS-19, 1' to 6'	SM/SC-SM w/ gravel	22.4	45.0	32.6	19.7	16.1	3.6
RS-20. 2' to 3'	SM w/ gravel	25.4	41.5	33.1	NP	NP	NP
RS-20, 2' to 4.5'	SM w/ gravel	28.9	41.4	29.7	15.5	15.4	0.1

⁽¹⁾ NP – non-plastic soil

Borings advanced in the vicinity or within the footprint of the Ore Surge Pile indicate bedrock depths ranging from 5.0 to 11.0 feet below the surface (Table 3-8), with soil depths up to 12 feet indicated on the depth to bedrock map (Attachment A). However, the soil samples were collected only from the highland areas of the stockpile and may differ from foundation soils at other locations within the Ore Surge Pile stockpile footprint, especially from soils within the lowland areas located on the eastern side of the stockpile.

3.6 Site Conditions Summary

The geotechnical investigations conducted by Golder (2006) and Barr (2008 and 2010) indicate that the site foundation glacial till (overburden) soils were typically silty sands with variable percentages of clay and gravels, which classify according to the USCS as SM, SP, ML, SC and CL. The fines content (percent passing the No. 200 sieve) of the soils encountered ranged from 2% to 67%. The majority of the soils collected were non-plastic. Measured in-situ moisture contents for non-peat material ranged from 1.0% to 26.9%. The permeability of the tested undisturbed native soils ranged from 3.1×10^{-7} to 9.4×10^{-7} cm/sec. The permeability of the tested compacted native soils ranged from 1.1×10^{-7} to 2.0×10^{-7} cm/sec, indicating that the native soils are favorable for use as a compacted soil liner.

Typically, the native glacial tills have sufficiently high fines content, with an exception of the G06-TP8 sample collected from 2 to 4.5 feet, and are considered good candidates for stockpile cover construction. Cover design is discussed in Reference (1).

To optimize stockpile liner designs, additional geotechnical site characterization will be obtained to support an IFC level design. However, collection of additional site geotechnical data will require access to the lowland areas that have both regulatory and logistical constraints. In particular, no additional site disturbance can occur to obtain additional data until the land exchange and appropriate permitting is completed. As a result, the Phase II Geotechnical Investigation will be completed following completion of the land exchange and

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 17

appropriate permitting, after the site is dewatered, prior to stockpile construction. This will include additional soil borings and test trenches as appropriate. The overall plan is to excavate and replace unsuitable foundation soils as part of stockpile development. Hence, additional subsurface exploration work will yield information required for annual project planning and for geotechnical analysis updates where needed. However, it is Golder's opinion that the existing geotechnical database, in combination with the requirements for stockpile liner construction subsequently stated herein, is sufficient to technically support the proposed stockpile designs for permitting. Furthermore, because the site geology and subsurface characteristics are generally understood, additional exploration will primarily be for the purpose of stockpile design optimization, confirmation of the design assumptions and earthwork balance computations.

The Phase II Geotechnical Investigation will have the following objectives:

- confirm the Phase I geotechnical classification of native soils, the locations of unsuitable soil materials, and the depth to bedrock and groundwater, and characterize the critical lowland areas prior to or in conjunction with IFC design and construction
- identify and delineate on-site borrow sources for liner and cover materials
- obtain additional samples of site overburden and waste rock materials for inlaboratory testing (if considered necessary) to confirm stability, consolidation, liner durability, and processing requirements
- update geotechnical and groundwater flow characterization analyses required to support the IFC design (i.e., to optimize the sizing and spacing of foundation underdrains, to optimize liner grades)
- provide additional site characterization information to support the bid procurement and construction requirements

As noted previously, the existing geotechnical database, in combination with the requirements for stockpile liner construction (i.e., for lined stockpiles remove all unsuitable foundation materials) subsequently stated herein and knowledge of the local geology is sufficient to technically support the proposed stockpile basic level designs for permitting. It is anticipated that upon completion of project permitting activities, Phase II Geotechnical Investigation activities will proceed in parallel with initial stockpile construction activities to support the IFC level of design.

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 18

4.0 Physical Properties of Materials

4.1 On-Site Soils

Golder's 2006 Phase I Geotechnical Investigation and in-laboratory material testing programs and Barr's 2010 overburden geotechnical investigation and material testing programs were conducted to provide preliminary estimates of the shear strength, permeability and consolidation parameters of the Mine Site soils. At the time that Golder's analyses were performed, only the 2006 data were available. Therefore, the following paragraphs describe only the Phase I Geotechnical Investigation test data in greater detail. However, the additional data collected by Barr in 2010 are presented in Attachment E and are reasonably consistent with that collected in 2006. Data for Peat is provided but not relevant to lined stockpile design because Peat is considered an unsuitable foundation material and will be removed prior to construction of lined stockpiles.

Consolidated-undrained (CU) triaxial testing (ASTM D4767) and one-dimensional consolidation testing (ASTM D2435) was conducted on a relatively undisturbed Shelby tube sample of lean clay (CL) obtained from test trench G06-TP5 at a depth of 0.5 to 4.0 feet. In the CU test, the specimen is permitted to drain and consolidate under the confining pressure until the excess pore pressure is equal to zero. The in-situ effective stress strength parameters yielded an effective cohesion of zero with an effective friction angle of 34.6 degrees. The consolidation test indicated a coefficient of consolidation (C_v) of 5.3×10^{-1} to 9.6×10^{-1} square foot per day (feet²/day) and a coefficient of compression (C_c) of 0.05 to 0.13 under the loading range of 1 to 16 kips per square foot.

In-laboratory material testing included Standard Proctor (ASTM D698) and falling head permeability (ASTM D5084) tests on three samples of native soils to evaluate their potential use as a soil liner and/or the anticipated hydraulic performance as a compacted subgrade. The samples tested included sample G06-TP4 at a depth of 0.5 to 4.5 feet, sample G06-TP7 at a depth of 0.5 to 3.5 feet, and sample G06-TP13 at a depth of 4 to 9 feet. All three samples classified as silty sand (SM) according to the USCS. The maximum standard Proctor dry density of the samples ranged from 118.3 to 125.7 pounds per cubic foot with an optimum moisture content ranging from 12.4 to 14.2%. Prior to permeability testing, the soil samples were remolded to 95% of the maximum standard Proctor dry density at the optimum moisture content. The permeability of the compacted native soils ranged from 1.1x10⁻⁷ to 2.0x10⁻⁷ cm/sec.

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 19

4.2 Waste Rock and Ore

For waste rock and ore stockpile analysis and design, the following physical properties are used:

Mean specific gravity: 2.93

Average dry density of waste rock: 1.90 tons per cubic yard (2.47 tons per cubic yard in place).

Average waste rock porosity (assumed): 23% (30% swell).

Granular Drainage Material 1: Minimum 2 feet of minus one and one-quarter-inch (1.25-inch) crushed rock or native gravelly materials with a minimum permeability of 1x10⁻² cm/s at 190 psi (to be confirmed by lab testing during the Phase II Geotechnical Investigation). This layer is also referred to as an overliner drainage layer. Maximum vertical stress on liner imposed by equipment not to exceed 8 psi; this criterion requires a minimum 6 feet of overliner material (Granular Drainage Material 1) required for a CAT 992 loader to operate on top of this material at Ore Surge Pile location.

Underdrain permeability: Minimum 1x10⁻² cm/s.

Compacted Subgrade: Consists of native till soils with upper one (1) foot compacted to a dry density equal to or greater than 95% of the standard Proctor maximum dry density (ASTM D698).

Category 2/3 Waste Rock Stockpile Liner (Category 2 Liner): Consists of native till soils compacted to a dry density equal to or greater than 95% of the standard Proctor maximum dry density (ASTM D698) and to achieve a permeability of equal or less than 1x10⁻⁵ cm/s. Bentonite admixing may be required to achieve the required maximum permeability. A non-soil component, consisting of a geomembrane liner, will be placed immediately above the soil liner to produce the Category 2/3 Waste Rock Stockpile composite liner system.

Category 4 Waste Rock Stockpile Liner (Category 1 Liner): Consists of native till soils compacted to a dry density equal to or greater than 95% of the standard Proctor maximum dry density (ASTM D698) and to achieve a permeability of equal or less than 1x10⁻⁶ cm/s. Bentonite admixing may be required to achieve the required maximum permeability. A non-soil component, consisting of a geomembrane liner, will be placed immediately above the soil liner to produce the Category 4 Waste Rock Stockpile composite liner system

Category 1 Waste Rock Stockpile Cover: Consists of a geomembrane hydraulic barrier layer underlain by native till soils processed as needed for use as

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 20

geomembrane foundation layer material, with native soils of varying type and organic content placed in layers above the geomembrane hydraulic barrier layer to control surface water runoff and infiltration and to support establishment of a dense vegetative final cover surface layer.

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 21

5.0 Stockpile Analysis and Design Inputs

The design intent is to use on-site materials and manufactured geomembranes for stockpile liner and cover construction. On-site soils will be utilized and processed as required to meet the design requirements. If on-site soils are not directly suitable for the specified application, the soils will be processed to achieve required material properties (i.e., for liners, a grizzly may need to be used to remove oversized materials and bentonite may be admixed to reduce permeability). The following paragraphs present the design criteria and data used for stockpile analysis and design.

5.1 Climatic Data

The following climatic data were used for stockpile design and analysis:

- average annual precipitation: 29 inches
- average annual PET: 21 inches.
- Climate period for modeling: 1971 to 2000.

5.2 Stockpile Geometry

Stockpile geometry for analysis is as follows:

- minimum width at the top of stockpile: approximately 150 feet or as controlled by the minimum safe turning radius for operating mine haulage trucks
- perimeter access road width (plus allowance for berms) for light truck traffic: 20 feet
- nominal angle of repose slopes: 1.4H:1V (horizontal:vertical) (assumed)
- maximum slope for stockpile foundation excavation: 2H:1V
- grading considerations at closure:
 - o for the Category 1 Waste Rock Stockpile: 3.75H:1V regraded interbench slopes for the geomembrane cover
 - o regrading is not considered for Categories 2/3 and 4 Waste Rock Stockpiles or the Ore Surge Pile as these are temporary stockpiles
- height of first lift (over geomembrane, where located): 15 feet
- height of second lift (over geomembrane, where located): 25 feet

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 22

- nominal lift height (after initial two lifts over geomembrane and where no geomembrane is located): 40 feet
- maximum stockpile heights and interbench slope configurations considered for stability analyses are:
 - o 160 feet at interbench slope angles of 1.4H:1V and 2.5H:1V
 - o 200 feet at interbench slope angle of 3H:1V
 - o 240 feet at interbench slope angle of 3.75H:1V

5.3 Stockpile Liner Systems and Foundations

The following information on stockpile liner systems and foundations was used for analysis:

- number of development phases: to be determined
- minimum grade for foundation underdrains: 0.5%
- minimum grade for drainage collection overliner: 0.5%
- liner system design, including piping and underliner and overliner collection points as presented in Section 2.1.3 of Reference (1))
- liner system geomembrane: 80 mil linear low density polyethylene (LLDPE)

5.4 Permanent Stockpile Development Sequence

For the Category 1 Waste Rock Stockpile, the basic engineering design assumes all unsuitable soils will be excavated and replaced with structural fill within the initial 100 feet inward from the toe limits (i.e., within 100 feet along the stockpile perimeter) for stability considerations. The perimeter stability will be confirmed based on the results of the Phase II Geotechnical Investigation.

The Category 1 Waste Rock Stockpile will be unlined. Drainage will be collected by a groundwater containment system constructed around the perimeter of the stockpile, as described in Section 2.1.2 of Reference (1)). The containment system will be installed in increments, with each increment installed prior to placement of waste rock in the stockpile segment adjacent increment.

5.5 Temporary Stockpile Development Sequence

Each of the liner systems for the temporary stockpiles will need to be constructed on a geotechnically-suitable foundation. The Phase II geotechnical program will be conducted to confirm the subgrade conditions and, if considered necessary, to collect samples for

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 23

laboratory testing. Following the Phase II geotechnical program, stockpile stability will be verified and anticipated consolidation settlements will be estimated to confirm the grading plan. As noted previously and described further below, unsuitable foundation soils will be removed from beneath lined stockpiles, thereby adding flexibility to the approach taken during the Phase II Geotechnical Investigation program.

The development concept for stockpile liners includes the following considerations and assumptions:

- conduct Phase II Geotechnical Investigation to verify or modify the design as necessary, based on the encountered geotechnical conditions
- drain the site to allow access for construction equipment
- perform clearing and grubbing activities within stockpile footprints
- excavate and stockpile geotechnical-unsuitable soils (e.g., organic soils, high-plasticity soils, unconsolidated clays) for future use as a construction material or reclamation growth medium leave structurally suitable materials (e.g., non-organic soils, over-consolidated low plasticity clays) in place above bedrock excavation and re-compaction of these materials is not required
- place structural fill as required to meet the foundation grade requirements (granular soils, low plasticity cohesive soils and Category 1 Waste Rock)
- compact structural fill materials to 95% of the maximum dry density determined by the Standard Proctor test (or to other percentage as may be specified in final construction plans and specifications)
- develop foundation drainage to minimize the potential for development of excess foundation pore water pressures, based on the geotechnical conditions encountered (Section 5.5.1)
- establish the foundation design grades required for drainage collection, stability and other design considerations by placing engineered fill
- construct the liner system dependent upon the reactivity category of the waste rock
- develop foundation grading to provide gravity drainage and collection of drainage from the stockpile to a series of collection sumps. The water collected in the sumps will be managed as described in Reference (2)
- construct overliner cover and drainage system to facilitate drainage collection and to minimize the potential for leaks in the stockpile liner system

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 24

It is anticipated that minor sub-excavation of unsuitable soils in the highland areas and that more considerable sub-excavation of unsuitable soils in the lowland areas will be required. The proposed stockpiles will exert significant stress on foundation soils. The definition of geotechnically-unsuitable soils as used herein refers to any foundation soil that may potentially undergo significant deformations, create stability problems, and/or jeopardize the general integrity of the stockpile foundations during stockpile use and after closure. In particular, soft clays or organic soils with low permeability that may exhibit large deformations and development of excess pore water pressure during the loading process are considered unsuitable. These unsuitable soils require excavation and replacement with structural fill. Structural fill materials are anticipated to consist of excavated local till and/or where approved for use, Category 1 Waste Rock, placed as fill in controlled compacted lifts. For foundations constructed solely of local soils, i.e., without Category 1 materials, grading plans are expected to undergo limited modifications in order to further optimize construction quantities.

5.5.1 Underdrain System

An underdrain system may be necessary in order to provide foundation drainage to facilitate construction of the liner systems and to minimize the potential for development of excess foundation pore water pressures as the stockpiles are loaded The purpose of the underdrain system is to provide gravity drainage for foundation materials in areas where elevated groundwater is encountered after routine construction dewatering has ceased, and to prevent or minimize the potential for excess pore water pressures to develop as the facility is loaded. The underdrain system may not be necessary in areas where grading fill uses Category 1 material, or in areas where granular moraine soils are present.

Preliminary designs for underdrain systems for the Category 2/3 stockpile, the Category 4 stockpile, and the Ore Surge Pile are presented in Attachment G. Design calculations, which were completed in 2008, used stockpile dimensions which differ slightly from the most current stockpile designs presented in Reference (1). Effects of these slight differences on design of underdrain systems will be resolved, and the extent and location of the underdrain system will be modified based on the results of the Phase II Geotechnical Investigation and/or conditions encountered during construction.

The preliminary underdrain design (Attachment G) includes minimum 4-inch diameter corrugated polyethylene pipes spaced at a nominal distance of 100 feet. This preliminary design is based on a minimum slope of the underdrain pipes of 0.5%, approximately following the liner grades. It is anticipated that the foundation water collected by the underdrain system will be of suitable water quality for off-site discharge through the stormwater system. Nonetheless, the underdrains will be configured to also accommodate water conveyance to the overliner sumps from where the water can be pumped to the mine Waste Water Treatment Facility. The design intent of the underdrain system is not for leakage collection; however, the potential exists that liner leakage, if it occurs, would be captured by the underdrains.

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 25

5.5.2 Liner System

The stockpile liner systems are designed to be commensurate with the level of environmental risk posed by each waste rock category, and considering the expected operating conditions of the stockpiles. Liner systems are detailed in Reference (1), and summarized in Table 5-1. The Ore Surge Pile requires a thicker overliner than the other temporary stockpiles to meet the design criteria of 8-psi maximum vertical stress on the liner based on the anticipated mine equipment operating on the overliner.

Table 5-1 Stockpile Liner System Design

Stockpile	Liner System
Category 1 Waste Rock Stockpile	No liner; drainage collection system at stockpile perimeter
Category 2/3 Waste Rock Stockpile	12-inch thick compacted (1x10 ⁻⁵ cm/s) subgrade (Category 2 Liner) overlain by 80 mil LLDPE geomembrane, covered by a 24-inch overliner drainage layer
Category 4 Waste Rock Stockpile	12-inch thick compacted (1x10 ⁻⁶ cm/s) subgrade (Category 1 Liner) overlain by 80 mil LLDPE geomembrane, covered by a 24-inch overliner drainage layer
Ore Surge Pile	12-inch thick compacted (1x10 ⁻⁶ cm/s) subgrade (Category 1 Liner) overlain by 80 mil LLDPE geomembrane, covered by a 6-foot overliner drainage layer

5.6 Stockpile Reclamation

The Category 1 Waste Rock Stockpile will be progressively reclaimed, starting in Mine Year 14, with an engineered geomembrane cover system (Section 3 of Reference (3)). Cover systems are not needed for the temporary stockpiles (Category 2/3 and Category 4 Waste Rock Stockpiles and Ore Surge Pile). Reclamation of the temporary stockpile footprints is described in Section 7 of Reference (1).

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 26

6.0 Stockpile Analysis and Design Outcomes

6.1 Stockpile Stability

The requirements for the stockpile geotechnical modeling are based on requirements of the Minnesota Department of Natural Resources Division of Lands and Minerals and are outlined in Attachment H, which describes the requirements for geotechnical analysis. Factors of Safety typically used by Golder for stockpile design at various phases of stockpile development are presented below. For geomembrane lined stockpiles, factors of safety are dependent on the geomembrane/soil liner interface strength parameters. For this analysis an effective friction angle of 19.0 degrees was used for the soil/liner interface strength. Peak friction angles in excess of 25 degrees are commonly reported in the literature, e.g. Williams and Houlihan (Reference (5)), Koutsourais et al. (Reference (6)), Stark et al. (Reference (7)), and Bhatia and Kasturi (Reference (8)). Interface friction angle will be confirmed during a Phase II Geotechnical Evaluation to be implemented prior to the initial stockpile construction. In summary, the stockpiles are designed to achieve the following:

- minimum long-term (effective stress) operational static factor of safety for deepseated failures (waste rock mass thickness in excess of 30 feet): 1.3
- minimum short-term (total stress) operational static factor of safety for deep-seated failures (waste rock mass thickness in excess of 30 feet): 1.1
- minimum composite slope (effective stress) pseudo static factor of safety: 1.0
- minimum composite slope static factor of safety at closure: 1.5
- minimum composite slope pseudo static factor of safety at closure: 1.1
- design earthquake peak ground acceleration (PGA) (operations and closure): 0.05g with a return period of approximately 500 years. The PGA for the NorthMet Mine Site is approximately 0.05g using the FEMA maps (Reference (9)) for the spectral accelerations with a 10% probability of exceedance in 50 years.

The PGA value, based on 10% probability of occurrence in 50 years and given the anticipated site conditions, is considered appropriate for the proposed structures assuming that failure would not represent significant risk to people or result in significant damages. The adopted PGA value of 0.05 g is likely conservative as the project is located in an area of negligible (lowest) seismic hazard for which seismic parameters are difficult to quantify. Further, the USGS reports the PGA value with the return period of approximately 2500 years (2% probability of exceedance in 50 years) to be below 0.04 g (Reference (10)).

Golder conducted global stability analyses to evaluate stockpile stability under static and pseudo-static (i.e., earthquake loading) conditions, to support the basic level engineering designs. Detailed documentation of the stability analyses are presented in Attachment I.

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 27

Design cross-sections were developed to represent the following typical conditions at different phases of stockpile development:

- Category 2/3 and Category 4 Waste Rock Stockpiles and Ore Surge Pile: initial operational configuration (single lift of waste rock placed in two stages)
- Category 2/3 and Category 4 Waste Rock Stockpiles: operational configuration at ultimate build-out
- Category 1 Waste Rock Stockpile:, initial operational configuration (a single lift of waste rock with a maximum height of 40 feet placed at the angle of repose)
- Category 1 Waste Rock Stockpile: operational configuration at ultimate buildout prior to reclamation (assume four lifts of waste rock)
- Category 1 Waste Rock Stockpile: reclaimed configuration, interbench slopes regraded to 2.5H:1V
- Category 1 Waste Rock Stockpile: reclaimed configuration, interbench slopes regraded to 3.0H:1V
- Category 1 Waste Rock Stockpile:, reclaimed configuration, interbench slopes regraded to 3.75H:1V

Stability analyses were conducted using RocScience's limit equilibrium program *SLIDE* (Reference (11)). Stability analyses assumed effective stress conditions and considered both circular and non-circular slip surfaces when searching for the critical surface with the minimum factor of safety. The stability analyses utilized the Spencer method (Reference (12)).

Assuming a liner interface (i.e., overliner material/LLDPE geomembrane liner/soil liner) friction angle of 19.0 degrees, all design sections met the minimum required factors of safety outlined above. As reported in Attachment I, computed slope stability factors of safety are equal or greater than the minimum required slope stability factors of safety for the assumed material parameters. As determined by the interface friction angle sensitivity analysis in Attachment I, interface friction angles of 15.7 degrees and greater will yield acceptable slope stability factors of safety for the conditions analyzed.

Stability analyses presented herein may change as a part of the final optimized stockpile design. Anticipated additional configurations to be analyzed during the final design include but are not limited to:

- 180 feet high stockpile with liner, and interbench slope angle of 1.4(H):1(V)
- 240 feet high stockpile without liner, and interbench slope angle of 1.4(H):1(V)

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 28

• Other configurations if needed to account for variation in stockpile foundation area topography and interim fill heights as deemed appropriate by the stockpile designer.

As presented in Attachment I, the analyses yielding the smallest computed factor of safety against slope instability are those that consider the 1.4(H):1(V) interbench stockpile slopes above a geomembrane liner system. The assumed liner interface friction, as well as the strength parameters for the considered foundation and stockpile materials, will be confirmed during the Phase II Geotechnical Investigation.

6.2 Foundation Settlement

To minimize foundation settlement and to achieve the desired performance characteristics of the stockpile drainage system, compacted waste rock and/or native soils will be used for foundation grading. Structural fill will dominantly consist of native till soils compacted to 95% of the maximum dry density as determined by the standard Proctor compaction test (ASTM D 698), or to other densities as may be specified in final construction plans and specifications. When Category 1 waste rock is used to develop the foundation grades, rock fill placement will need to occur with controlled lifts placed in accordance with a specified rock fill compaction method.

The foundation soils may exhibit moderate settlement under the high-stress design conditions. As a result, a LLDPE geomembrane, or elastic polymer geomembrane with similar biaxial deformation properties, is specified for the geomembrane barrier layer component of the basal liner system for the Category 2/3 Waste Rock Stockpile, Category 4 Waste Rock Stockpile and the Ore Surge Pile due to its ability to accommodate high strain deformations. Foundation settlement and liner strain calculations are presented in Attachment J. Estimated strains are less than 1%; well below the 30% maximum strain allowed for a LLDPE geomembrane.

6.3 Liner Survivability

For angular overliner materials, a geomembrane liner load test will be conducted during the Phase II Geotechnical Investigation to support specification of the acceptable geomembrane thickness. Survivability of the proposed 80 mil LLDPE geomembrane liner for use in stockpile construction under the anticipated loading conditions is discussed in more detail in Attachment K.

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 29

7.0 Certification

I hereby certify that this report was prepared by me or under my direct supervision and that I am a duly licensed Professional Engineer under the laws of the State of Minnesota.

<DRAFT> <DRAFT>

Gordan Gjerapic, Ph.D., MN P.E. #47209 or Brent R. Bronson, MN P.E. #46492

Geotechnical Engineer Principal

Golder Associates Golder Associates

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 30

8.0 Revision History

Date	Version	Description
10/04/2011	1	Initial release
05/29/2012	2	Version 2 with Responses to Comments (ERM and MDNR, EPA, Sutton) Incorporated
11/3/2014	3	Version 3 incorporates edits for consistency with Project changes since issuance of Version 2
11/25/2014	4	Version 4 incorporates edits in Response to Comments (MDNR, Knight Piesold)

Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 31

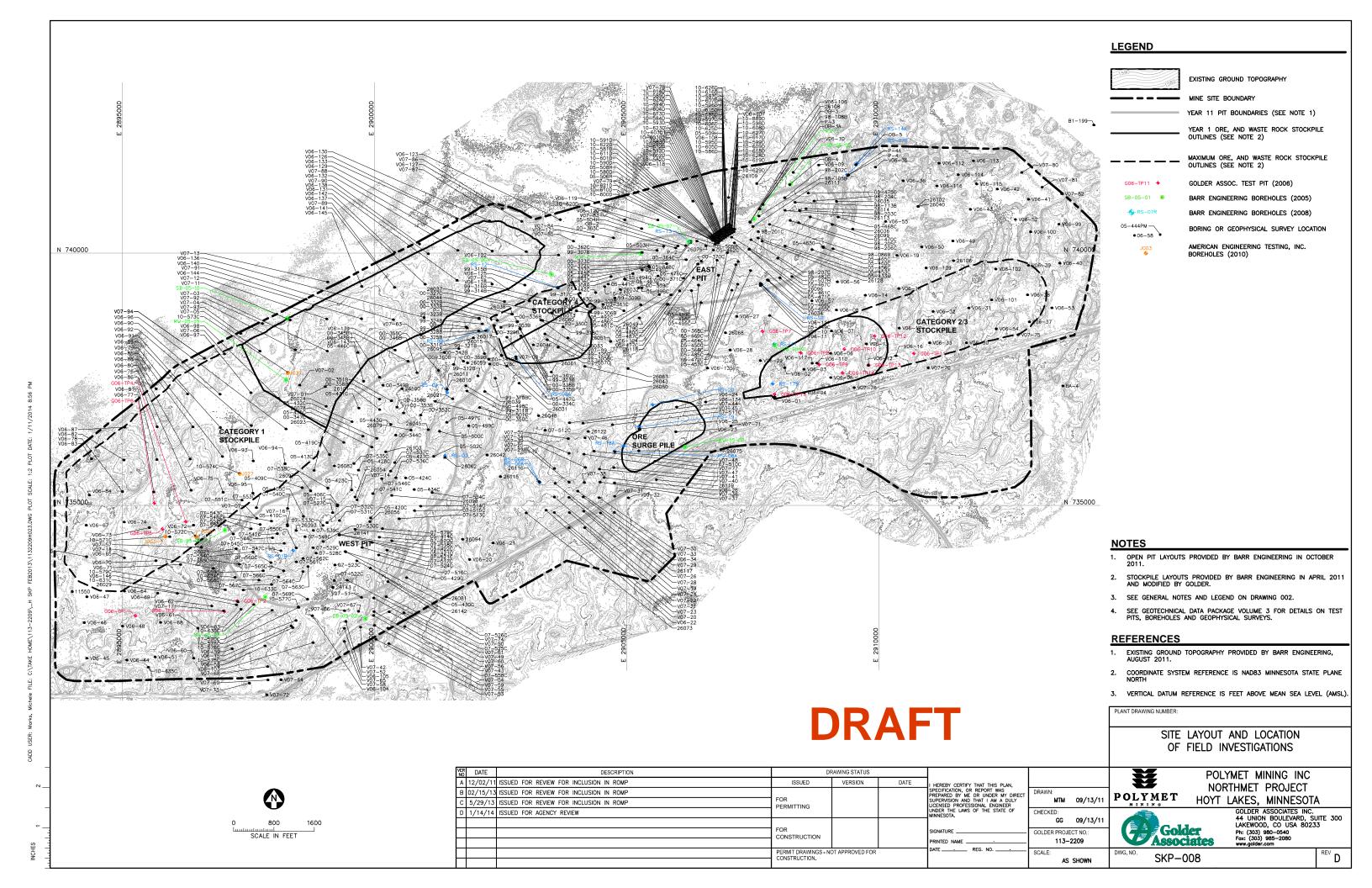
9.0 References

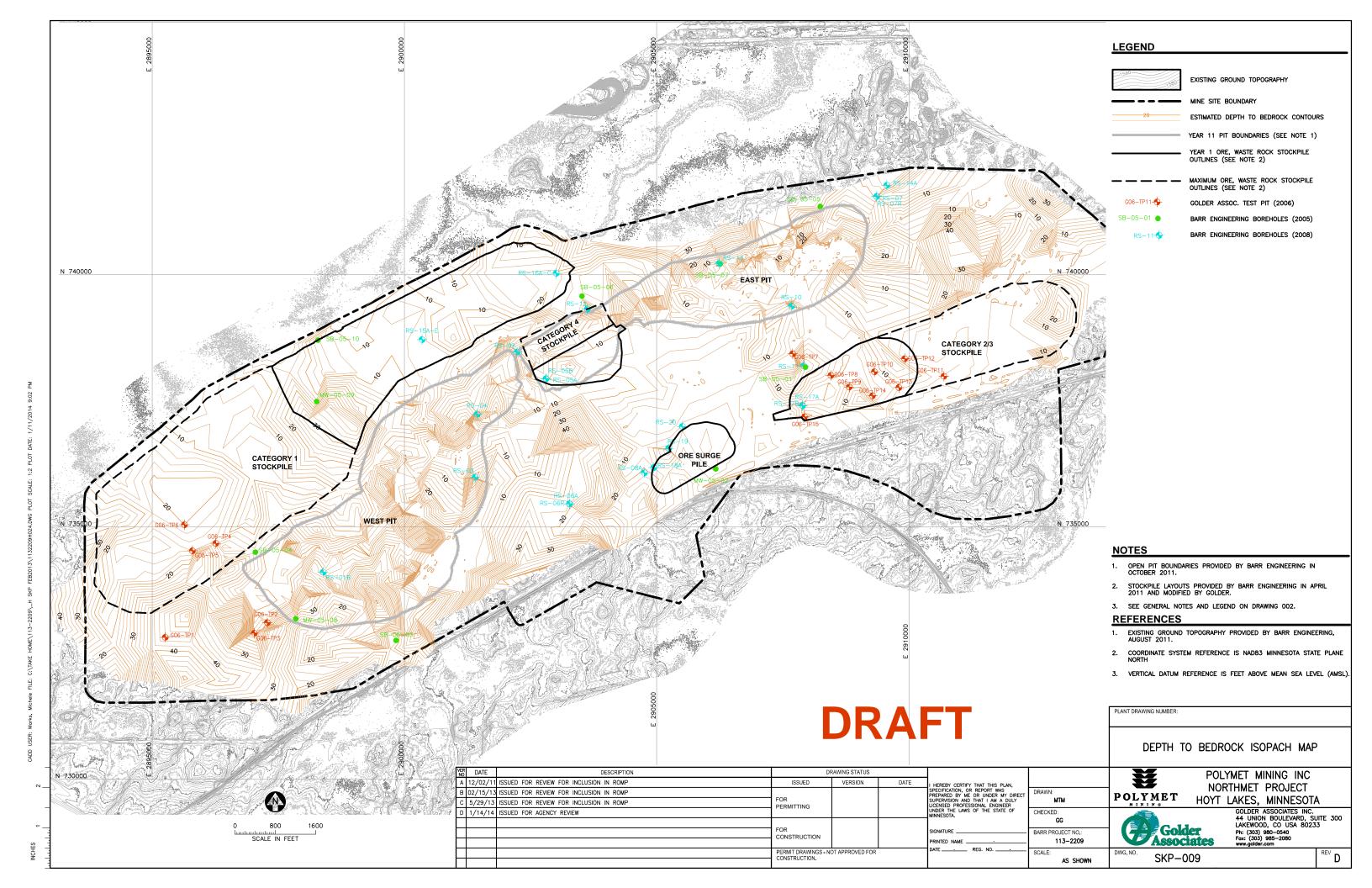
- 1. **Poly Met Mining Inc.** NorthMet Project Rock and Overburden Management Plan (v6). November 2014.
- 2. —. NorthMet Project Water Management Plan Mine Site (v3). December 2014.
- 3. —. NorthMet Project Adaptive Water Management Plan (v6). December 2014.
- 4. **Barr Engineering Company.** RS14 Wetland Delineation and Wetland Functional Assessment Report (Draft-02). [RS14 Draft-02]. November 2006.
- 5. Evaluations of Interface Friction Properties Between Geosynthetics and Soils. Williams, N. D. and Houlihan, M. F. New Orleans: s.n., 1987. Geosynthetics '87. pp. 616-627.
- 6. **Koutsourais, M. M., Sprague, C. J. and Pucetas, R. C.** Interfacial Friction Study of Cap and Liner Components for Landfill Design. *Geotextiles and Geomembranes*. s.l.: Elsevier Ltd., 1991, Vol. 10, pp. 531-548.
- 7. **Stark, Timothy D., Williamson, Thomas A. and Eid, Hisham T.** HDPE Geomembrane/Geotextile Interface Shear Strength. *Journal of Geotechnical Engineering*. 1998, Vol. 122, 3, pp. 197-203.
- 8. **Bhatia, Dr. Shobha K. and Kasturi, Gautam.** Comparison of PVC and HDPE Geomembranes Interface Friction Performance for PVC Geomembrane Institute. Champaign, IL, USA: Department of Civil and Environmental Engineering Syracuse University, November 1996.
- 9. **Federal Emergency Management Agency (FEMA).** National Earthquake Hazards Reduction Program (NEHRP) Recommended Provisions for Seismic Regulations for New Buildings and Other Structures Part 1: Provisions, FEMA document No. 368 prepared by the Building Seismic Safety Council, Washington D.C. 2001.
- 10. **United States Geological Survey.** Hazard Mapping Images Data, 2008 Hazard Map (PGA, 2% in 50 years). *Earthquake Hazards Program*. [Online] 2012. http://earthquake.usgs.gov/hazards/products/graphic2pct50.pdf.
- 11. **RocScience.** Users Manual for Slide Version 6.017. *Rocscience*. 2012.
- 12. **Spencer, E.** A Method of Analysis of the Stability of Embankments Assuming Parallel Inter Slice Forces. *Geotechnique*. 1967. Vols. XVII, No. 1, pp. 11-26.

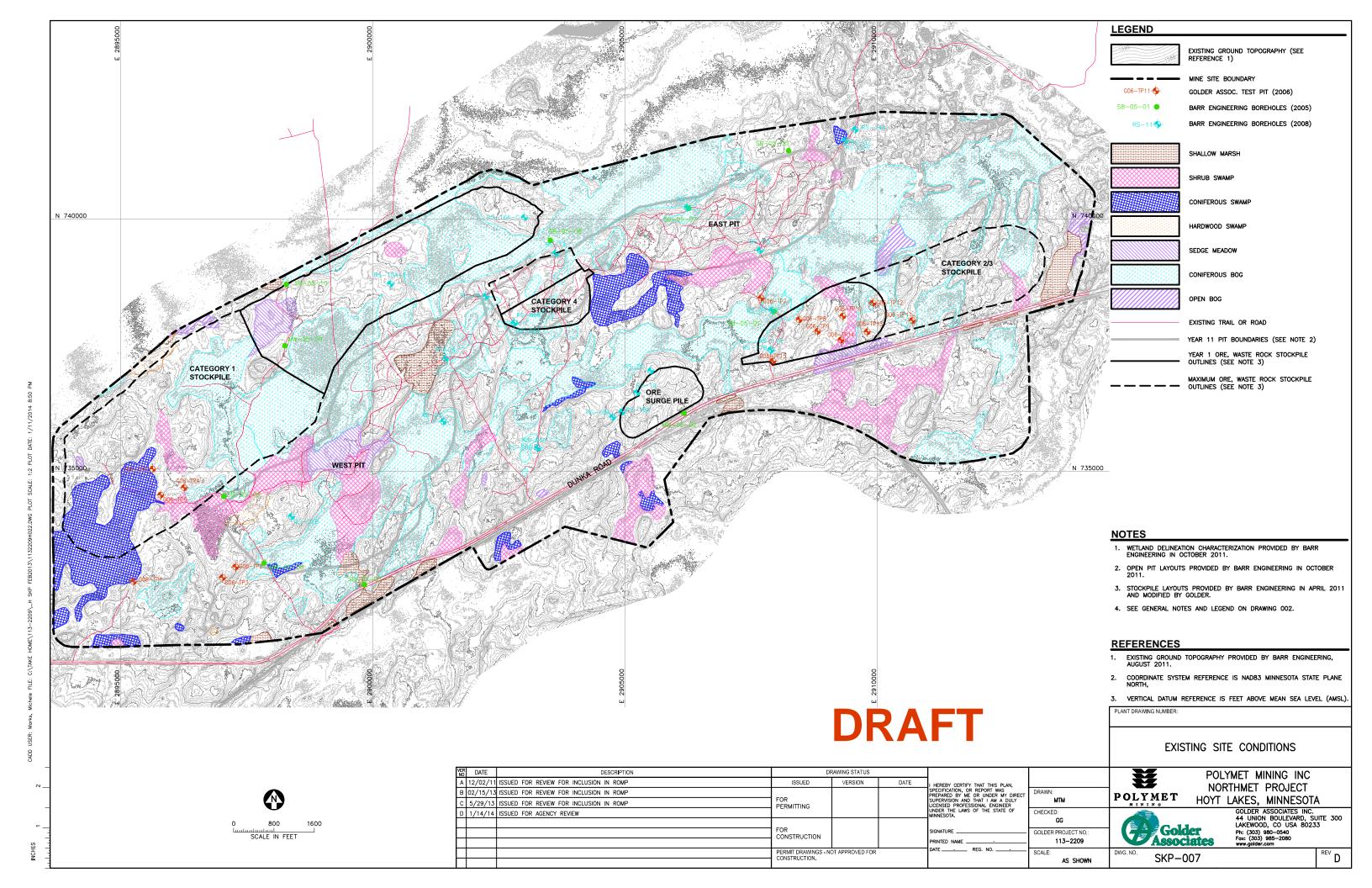
Date: November 25, 2014	NorthMet Project Geotechnical Data Package (Volume 3)
Version: 4	Page 32

List of Tables

Table 3-1	Depth to Bedrock Data from Geotechnical Borings by Barr (2005, 200) and Test Trench Investigations by Golder (2006)	′
Table 3-2	Category 1 Waste Rock Stockpile Boring and Test Pits	9
Table 3-3	Geotechnical Classification Results for Category 1 Waste Rock Stockpile Soils	11
Table 3-4	Category 2/3 Waste Rock Stockpile Borings	12
Table 3-5	Geotechnical Classification Results for Category 2/3 Waste Rock Stockpile Soils	13
Table 3-6	Category 4 Waste Rock Stockpile Test Pits	14
Table 3-7	Geotechnical Classification Results for Category 4 Waste Rock	1.4
	Stockpile Soils	14
Table 3-8	Ore Surge Pile Borings	15
Table 3-9	Geotechnical Classification Results for Ore Surge Pile Soils	16
Table 5-1	Stockpile Liner System Design	25

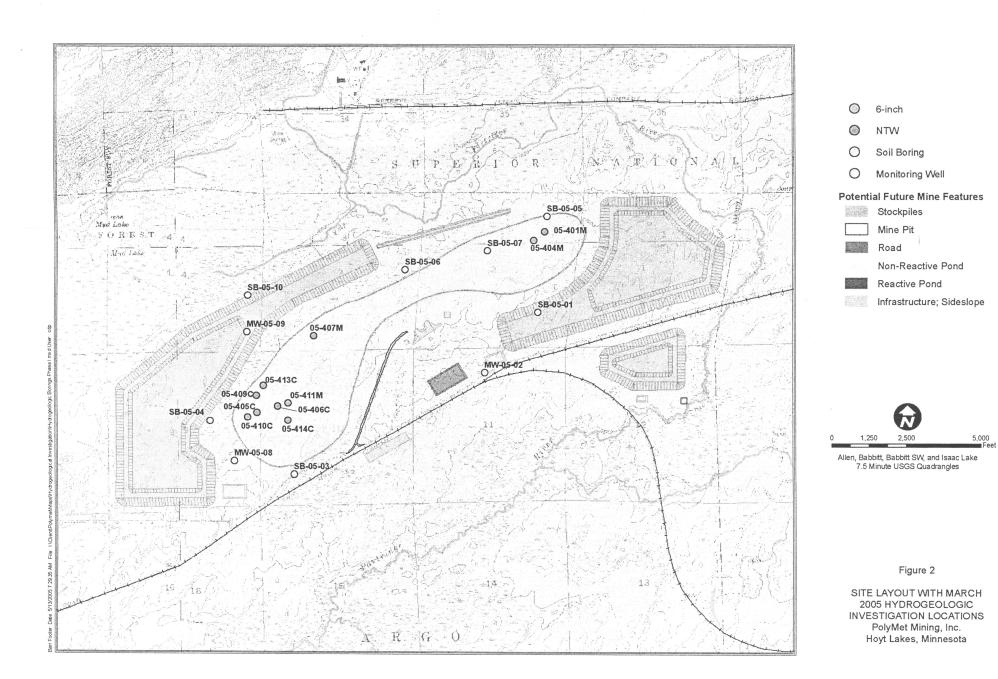

List of Attachments


Attachment A	Exiting Conditions and Location of Field Investigations
Attachment B	Well Installation Field Program - Boring Logs
Attachment C	Phase I Geotechnical Investigation
Attachment D	Rotasonic Drilling Investigation – Boring Logs and Classification Testing
Attachment E	Overburden Geotechnical Investigation - Boring Logs and Material Testing
	Data Sheets
Attachment F	Depth to Bedrock Boring ID and Coordinate Location
Attachment G	Underdrain Design Computations
Attachment H	Geotechnical Modeling Work Plan
Attachment I	Stockpile Stability Evaluation
Attachment J	Foundation Settlement and Liner Strain Calculation
Attachment K	Liner Survivability Evaluation


Attachments

Attachment A

Exiting Conditions and Location of Field Investigations



Attachment B

Well Installation Field Program - Boring Logs

Client PolyMet Mining Corporation			Drill Contractor WDC Exploration & Wells LOG OF Boring SB-C SHEET SHEET					
Project Name PolyMet Hydrogeologic Inve	estigatio	n Dril	Drill Method Rotasonic DRAFT SHEET					
Number <u>23/69-862</u>		Dril	Drilling Started 3/13/05 Ended 3/13/05 Elevation					
Location NorthMet Mine Site			ged E	By _Jere Mohr Total Depth _19.0				
DEPTH WAS A MAN Discoloration-Odor-Sheen	Moisture	ASTM	LITHOLOGY	DESCRIPTION	DEPTH FEET			
	Wet	CL		Light brown to gray clayey topsoil with rocks (~25%), wet at 1' bgs.				
5	Wet	CL		Grayish-brown silty clay, wet. Reddish-brown organic-rich silty clay.	5			
		OL			-			
10	Wet	Ol.		Dark brown to gray organic-rich silty clay. Rocky at ~10'. Rock is fine-grained black (Virginia Formation). Black fine-grained rock (Virginia Formation).	- 10 - 15			
	Wet			End of Boring - 19 feet				
Barr Engineering				Remarks Temp well screen (5') set from 10-15' bgs. Allowed to collapse to ~ then bentonite chips.	8' bgs,			

BARR

Barr Engineering 4700 W 77th Street Minneapolis, MN 55435 Telephone: 952-832-2600 Fax: 952-832-2601

Client PolyMet Mining Corporation Project Name PolyMet Hydrogeologic Investigation	Drill Contractor WDC Exploration & Wells Drill Method Rotasonic	DRAFT SHEET 1 OF 1
	Drilling Started 2/14/05 Ended 2/15/05	Elevation
	annual Die Java Mahu	Fotal Depth 18.0
DEPTH A S & S A MP Discoloration- Odor- Sheen Sign of State of S A MP S A S A S A S A S A S A S A S A S A S	DESCRIPTION DESCRIPTION	WELL OR PIEZOMETER DEPTH CONSTRUCTION DETAIL FEET
	Medium brown sandy clay, upper 1' wet, then moist, very moist at 5'. Chunks of black crystalline rock at 5'. Duluth Complex gabbro. End of Boring - 18 feet	PRO. CASING Diameter: 6 inches Type: Steel Interval: 0-4 ft bgs RISER CASING Diameter: 2 inches Type: PVC Interval: 0-5 ft bgs GROUT Type: Cement Interval: 0-4 ft bgs SEAL Type: Bentonite Interval: 4-5 ft bgs SANDPACK Type: Red Flint Interval: 5-6.5 ft bgs SCREEN Diameter: 2 inches Type: PVC Interval: 5.5-6.5 ft bgs
Barr Engineering 4700 W 77th Street Minneapolis, MN 55435 Telephone: 952-832-2600 Fax: 952-832-2601	Remarks Additional data may have been collected in the field v	vhich is not included on this loa

Client PolyMet Mining Corporation Project Name PolyMet Hydrogeologic Investigation	Drill Contractor WDC Exploration & Wells Drill Method Rotasonic LOG OF BORING SB-0 DRAFT SHEET					
Number 23/69-862	Drilling Started 3/15/05 Ended 3/15/05 Elevation					
Location NorthMet Mine Site	Logged By Jere Mohr Total Depth 20.5					
DEPTH WE WIND Discoloration- Odor- Sheen WO S	DESCRIPTION DESCRIPTION	DEPTH				
Moist	CL Dark brown to gray sandy clay.					
5—————————————————————————————————————	CL CL	5				
Moist 10	Reddish brown sandy clay with ~30% rocks/cobbles (Virginia Formation).	10				
Wet	SM Gray-brown silty sand. Gray sandy clay with ~20% rocks/pebbles.	-				
Moist	CL Boulder (no recovery).	_				
		15				
	Very dense gray clay.					
DT 5/12/05	Fine grained black rock (Virginia Formation).					
20 – 20 – 20 – 20 – 20 – 20 – 20 – 20 –	End of Boring - 20.5 feet	_ 20				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
Barr Engineering 4700 W 77th Street Minneapolis, MN 55435 Telephone: 952-832-2600 Fax: 952-832-2601	Remarks Temp well screen (5') set from 7.5' to 12.5' bgs. Additional data may have been collected in the field which is not included on this log.					

Client PolyMet Mining Corporation	Drill Contractor WDC Exploration & Wells Drill Method Rotasonic Drill Method Rotasonic LOG OF Boring SB-DRAFT				
Project Name PolyMet Hydrogeologic Investigation					
Number _23/69-862	Drilling Started 3/7/05 Ended 3/8/05 Elevation				
	ged By Mark Hagley	444,774	Total Depth 20.0		
DEPTH HAMP Discoloration-Odor-Sheen Wasture MAMP Sheet Shee	ПТНОГОСУ	DESCRIPTIO	N	DEPTH FEET	
	Peat/wetland ve	getation, frozen.	_		
5	Tan - brown clay	ey silt, uniform, moist to wet.	-	5	
	Dark-gray silty o	lay, dense. y silt with ~10% cobbles (up t	o 2" diameter)		
10		and with 10-20% coarse grave		- 10	
15			-	· 15	
Barr Engineering 4700 W 77th Street Minneapolis, MN 55435 Telephone: 952-832-2600 Fax: 952-832-2601	Greenish-black	crystalline rock - Duluth Com	ulex gabbro.		
29862.	F-1-(D-1)	20 foot			
040	End of Boring -		5-20' bgs, allowed to collapse from		
Barr Engineering 4700 W 77th Street Minneapolis, MN 55435 Telephone: 952-832-2600 Fax: 952-832-2601	14-2	o', bentonite chips from 2-14'	bgs.		

Number _23/69-862	2		Drill	ling S	tarted 3/13/05 Ended 3/13/05	Elevation	
Location NorthMet	Mine Site		Log	ged E	By Jere Mohr	Total Depth 18.0	
SAMP. LENGTH & RECOVERY SAMP. NUMBER	Discoloration- Odor- Sheen	Moisture	ASTM	LITHOLOGY	DESCRIPT	TION	DEF
-		Moist	CL		Dark brown to black clayey topsoil.		
-					Dark black fine-grained rock (boulder).		
5					Medium brown silty sand.		- 5
-		Dry	SM		·		
					Dark black fine-grained rock.		
10-							- 10
							-
-		Dry					
							-
15—							- 15
-		-					-
					End of Boring - 18 feet		
					Remarks No temp well set - dry borehold	3	
470	rr Engineering 00 W 77th Street nneapolis, MN 554	35			Tremains no temp well set - dry porefloit	<i></i>	

Project Name PolyMet Hydrogeologic Investigation					
	Logged By Jere Mohr	Elevation Total Depth _16.0			
DEPTH NOW BE SAMP Discoloration-Odor-Sheen MOISTURE SHEET S	DESCRIPTION DESCRIPTION	DEPTH FEET			
10 - Wet Wet Wet	OL				
369662.GPJ BARRLOG.G					
Barr Engineering 4700 W 77th Street Minneapolis, MN 55435 Telephone: 952-832-2600 Fax: 952-832-2601	Remarks Temp well screen (5') set from a Additional data may have been collected in the fie				

Client PolyMet Mining Corporation Project Name PolyMet Hydrogeologic Investigation				Drill Contractor WDC Exploration & Wells Drill Method Rotasonic LOG OF Boring SB- DRAFT SHEET				
Number 23/69-862				Drilling Started 3/12/05 Ended 3/12/05				
Location NorthMet N	Mine Site		Log	ged E	By Mark Hagley	Total Depth 17.0		
SAMP, LENGTH & RECOVERY SAMP, NUMBER	Discoloration- Odor- Sheen	Moisture	ASTM	LITHOLOGY	DESCRIPT	TION	DEPTH FEET	
10 — 15 — 15 — 15 — 15 — 15 — 15 — 15 —		Moist	SM ML SC		Brown silty sand with 10-20% cobbles and to 1.5', moist below. Gray/brown silty sand with trace of clay and Dark gray sandy silt with cobbles. Very dense brown clayey sand with ~15% Green/black coarse crystalline rock (Dulut)	gravel and cobbles (to 1"). (Till)	— 10 — 15	
							_	

BARR

ENVIRO LOG 5 (5/27/04) 2369862.GPJ BARRLOG.GDT 5/12/05

Barr Engineering 4700 W 77th Street Minneapolis, MN 55435 Telephone: 952-832-2600 Fax: 952-832-2601 Remarks Temp well screen (5') set from 8-13' bgs, allowed to collapse up to 6.2', then bentonite chips above.

Client PolyMet Mining Corporation Project Name PolyMet Hydrogeologic Investigation	Drill Contractor WDC Exploration & Wells Drill Method Rotasonic	LOG OF WELL MW-05-08 DRAFT SHEET 1 OF 1
Number <u>23/69-862</u>	Drilling Started 3/16/05 Ended 3/16/05	Elevation
Location NorthMet Mine Site	Logged By Jere Mohr	Total Depth 28.5
SAMP. LENGTH COVERY Opporation-Op	DESCRIPTION DESCRIPTION	WELL OR PIEZOMETER DEPTH CONSTRUCTION DETAIL FEET
Wet @ 6*	Light brown medium to coarse silty sand.	PRO. CASING Diameter: 6 inches Type: Steel Interval: 0-5 ft bgs RISER CASING
5	Dark brown, well-sorted medium sand.	Diameter: 2 inches Type: PVC Interval: 0-7.5 ft bgs GROUT Type: Cement
10 ————————————————————————————————————	SP	Interval: 0-5 ft bgs SEAL. — 10 Type: Bentonite Interval: 5-7 ft bgs SANDPACK Type: Red Flint
15————————————————————————————————————	Dark brown, well-sorted fine to medium sand with silt.	
Wet	SP	Type: PVC Interval: 7.5-17.5 ft bgs Natural formation allowed to cave below 17.5 bgs.
20 ————————————————————————————————————	Gray silty clay with granite and mafic rock fragments and pebbles. (Till)	— 20 - -
Wet PW 200 60D 500 500 500 500 500 500 500 500 500 5	CL.	- 25 - -
2369862,GPJ BA	End of Boring - 28.5 feet	
Barr Engineering 4700 W 77th Street Minneapolis, MN 55435 Telephone: 952-832-2600 Fax: 952-832-2601	Remarks Well installed in adjacent boring in MW-05-08. Heaving sand - Additional data may have been collected in the	ng (boring not logged) due to loss of casing difficult drilling and well installation.

Client PolyMet Mining Corporation Project Name PolyMet Hydrogeol				tractor WDC Exploration & Wells	LOG OF WELL MW-05-09 DRAFT SHEET 1 OF 1
Number <u>23/69-862</u>					Elevation
Location NorthMet Mine Site		Log	ged l	By Mark Hagley	Total Depth 13.0
DEPTH DIscoloration of the property of the pro	Moisture	ASTM	LITHOLOGY	DESCRIPTION	WELL OR PIEZOMETER DEPTH CONSTRUCTION DETAIL FEET
5	Dry Wet Moist/Wet	SP SM		Topsoil. Brown, fine-grained sand with 5-10% gravel, moist. Gray-brown, fine-grained silty sand with up to 40% gravel, cobbles and boulders (angular), dry. Very difficult drilling (highly compacted). Brown, medium to coarse sand, uniform, wet. Brown silty sand with some clay and trace of gravel and cobbles, moist/wet.	RISER CASING Diameter: 2 inches Type: PVC Interval: 0-7.5 ft bgs GROUT Type: Cement Interval: 0-4.5 ft bgs SEAL Type: Bentonite Interval: 4.5-6.5 ft bgs SANDPACK
Barr Engineerir 4700 W 77th St Minneapolis, M Telephone: 95. Fax: 952-832-2	treet N 55435 2-832-2600			Gray-black, fine grained crystalline rock, magnetic (Iron formation) assumed to be a boulder. End of Boring - 13 feet Remarks Additional data may have been collected in the field v	——————————————————————————————————————

Client PolyMet Mining Corporation			Drill Contractor WDC Exploration & Wells Drill Method Rotasonic LOG OF Boring SB-05 DRAFT SHEET 1				
		estigation					
Number 23/69-862					tarted 3/9/05 Ended 3/10/05 Elevation		
Location NorthMet	Mine Site		Log	ged E	By Mark Hagley Total Depth 14.5		
SAMP NUMBER	Discoloration- Odor- Sheen	Moisture	ASTM	LITHOLOGY	DESCRIPTION	DEPTH	
			PT		Peat/Organic material. Frozen.		
			SM		Fine-grained silty sand, brown, with 5-10% gravel and cobbles (up to 1/2", angular).		
10-					Dark gray, fine-grained crystalline rock. Argillite (Virginia Formation).	- 5 - - 10	
- 1					End of Boring - 14.5 feet	-	
15—					Cita of boning - 14.5 feet	- 15 - -	
Barr Engineering 4700 W 77th Street Minneapolis, MN 55435 Telephone: 952-832-2600 Fax: 952-832-2601					Remarks No temporary well set in boring; set in adjacent boring SB-05-10A		

ENVIRO LOG 5 (5/27/04) 2369862.GPJ BARRLOG.GDT 5/12/05

Project Name PolyMet Hydrogeologic Investigation Number 23/69-862			n Drill Drill	Drill Contractor WDC Exploration & Wells Drill Method Rotasonic Drilling Started 3/10/05 Ended 3/10/05 Elevation Logged By Mark Hagley LOG OF WELL SB-0 DRAFT Elevation Total Depth 6.0				
SAMP. NUMBER	Discoloration- Odor- Sheen	Moisture	ASTM	LITHOLOGY	DESCRIPT		DEPTH	
FEET SAMP.	Sheen	OM .	PT SM CL	PILL	Peat/Organic material. Frozen. Fine-grained silty sand, brown, with 5-10% angular). Dark brown sandy clay with <5% angular g		- 5 - 10	
- - Ba	rr Engineering				Remarks Temp well screen (4') set from 2 then bentonite chips to surface.	2-6' bgs, allowed to collapse to ∼1.	- 5' bgs,	
4700 W 77th Street Minneapolis, MN 55435 Telephone: 952-832-2600 Fax: 952-832-2601					Additional data may have been collected in the fie	ld which is not included on this log.		

ENVIRO LOG 5 (5/27/04) 2369862.GPJ BARRLOG.GDT 5/12/05

Attachment C

Phase I Geotechnical Investigation

Golder Associates Inc.

1346 West Arrowhead Road, #304 Duluth, MN USA 55811 Telephone (218) 724-0088 Fax (218) 724-0089

REPORT ON

PHASE I GEOTECHNICAL FIELD INVESTIGATION POLYMET NORTHMET SITE NEAR BABBITT, MINNESOTA

Submitted to:

PolyMet Mining Corporation P. O. Box 475, County Road No. 666 Hoyt Lakes, Minnesota 55750-0475

Submitted by:

Golder Associates Inc. 1346 West Arrowhead Road, #304 Duluth, Minnesota 55803

Distribution:

1 Copy - PolyMet Mining Corporation - Richard Patelke, Project Geologist

1 Copy – PolyMet Mining Corporation – Jim Scott, Assistant Project Manager

1 Copy – Barr Engineering – Nancy Dent

1 Copy – Golder Associates Inc. – Denver, Colorado

1 Copy – Golder Associates Inc. – Duluth, Minnesota

August 29, 2006 053-2209.002

Golder Associates Inc.

1346 West Arrowhead Road, #304 Duluth, MN USA 55811 Telephone (218) 724-0088 Fax (218) 724-0089

August 29, 2006 Our Ref.: 053-2209.002

PolyMet Mining Corporation P. O. Box 475, County Road No. 666 Hoyt Lakes, MN 55750-0475

Attention: Mr. Don Hunter, C. Eng., CP

RE: PHASE I GEOTECHNICAL FIELD INVESTIGATION REPORT POLYMET NORTHMET SITE - NEAR BABBITT, MINNESOTA

Dear Mr. Hunter:

This data report summarizes the results of the Phase I geotechnical test trench program performed for the PolyMet NorthMet Project. We trust that this report provides you with the preliminary information that you need at this time.

This report presents the results of the field investigation, referencing the early waste stockpile footprints proposed by PolyMet. Additional recommendations for the waste stockpiles, including locating and sizing of the waste stockpile footprints, are currently being developed by our staff in the Denver office based on recent information received from your design team.

We look forward to continuing to work with you on this interesting project. Please contact Brent Bronson at (303) 980-0540 with any questions regarding this report.

Sincerely,

GOLDER ASSOCIATES INC.

Amy C. Thorson, P.E.

Senior Engineer

amy Thorson

Brent R. Bronson, P.E. Principal and Project Manager

ACT/BRB:dls

TABLE OF CONTENTS

1.0	INTRODUCTION1								
2.0	FIELD INVESTIGATION								
3.0	SUBSURFACE CONDITIONS4								
4.0	LABORATORY TESTING6								
5.0	CLOSING9								
		LIST OF TABLES							
Table 1 Table 2 Table 3 Table 4		Test Trench Locations Summary of Bedrock Depths Summary of Index Test Results Summary of Permeability Test Results							
		LIST OF FIGURES							
Figure	1	Test Trench Location Map							
		LIST OF APPENDICES							
Append Append Append	lix B	Logs of Test Trenches Sieve Analyses One-Dimensional Consolidation Triaxial Shear Test Report Moisture Density Relationships Permeability Test Data Soil Classification/Legend ASTM Classification/Index							
		AST IVI Classification/fildex							

1.0 INTRODUCTION

This report presents the results of the test trenching exploration and geotechnical laboratory testing program conducted by Golder Associates Inc. (Golder) for the proposed waste stockpiles at PolyMet Mining Corporation's (PolyMet) NorthMet Project near Babbitt, Minnesota. Our work was performed in general accordance with our written proposal dated May 31, 2005. The preliminary selection of test trench locations was determined during a site visit on March 1, 2006. This site visit was performed by Amy Thorson and Brent Bronson of Golder, and Richard Patelke and Jim Scott of PolyMet. The number and location of test trenches was limited to areas accessible from existing logging trails and excluding wetlands (i.e., highland areas only). The purpose of this investigation was to determine subsurface soil conditions for use in providing waste stockpile design recommendations.

Prior to scheduling exploration work, permission was requested from the United States Forest Service (USFS). On March 11, the USFS published a Legal Notice in the Mesabi Daily News regarding the intended services and allowed a 30-day public comment period. After this 30-day period, plus the required 5-day waiting period for any mailed responses, Golder commenced the test trenching operations on April 17, 2006. Presented in this report are field observations and geotechnical laboratory test results.

2.0 FIELD INVESTIGATION

On April 7, 2006, the test trench locations were sited on foot by Amy Thorson and Matt Krzewinski of Golder, accompanied in part by Steven Goertz of PolyMet. The purpose of this trip was primarily to verify access after snow melt and to compare the intended locations to wetland maps which were provided after the March 1, 2006 site visit. The 15 selected test trench locations were staked with lath and electronically recorded with GPS. Table 1 lists the northing and easting coordinates for the test trench locations per the NADA83, UTM datum. The test trench locations are illustrated on Figure 1.

TABLE 1
TEST TRENCH LOCATIONS

Boring							
Number	Easting	Northing					
	West Stockpile Area						
G06-TP1	574,936	5,272,811					
G06-TP2	575,553	5,272,900					
G06-TP3	575,474	5,272,836					
G06-TP4	575,242	5,273,379					
G06-TP5	575,100	5,273,334					
G06-TP6	575,052	5,273,491					
	Pre-Production Area						
G06-TP7	578,727	5,274,524					
G06-TP8	578,958	5,274,393					
G06-TP9	579,069	5,274,323					
G06-TP15	578,799	5,274,143					
	East Stockpile Area						
G06-TP10	579,221	5,274,415					
G06-TP11	579,641	5,274,388					
G06-TP12	579,404	5,274,494					
G06-TP13	579,369	5,274,320					
G06-TP14	579,210	5,274,271					

The subsurface exploration program was advanced on April 18 and 19, 2006, by Robert Radotich of Radotich Enterprises, LLC (Radotich) with the test trenches logged and sampled by Matt Krzewinski of Golder. The program consisted of Radotich moving a wide tracked backhoe up the existing logging roads and then around and/or in-between existing trees within existing clear cut areas to access the previously marked trench locations. The actual trenching process consisted of the backhoe removing the soil from an area with a maximum dimension of 5 feet wide by 15 feet long and 20 feet deep. The soil was stockpiled beside the trench in separate piles according to depth it was

encountered, where it was visually classified and sampled by the Golder technician. Upon completion, the soils were carefully replaced in the trench in the same layers as it was removed.

3.0 SUBSURFACE CONDITIONS

The subsurface conditions encountered at the site are depicted in detail on the Logs of Test Trenches included in Appendix A of this report. The logs also indicate the test trench number, date, and name of the technician that logged the test trenches. The soils were described in general accordance with Golder's protocols and field-classified according to ASTM D2488. The boundaries between different soil types shown on the logs are approximate because the actual transition between soil layers may be gradual. Samples of representative soils were obtained from the test trenches. See Appendix C for further information on soil classification procedures utilized by Golder.

The test trenches encountered up to 6 inches of topsoil over primarily silty sand with boulders and cobbles. Test trenches G06-TP5 and G06-TP6 at the north end of the West Stockpile encountered layers of sandy lean clay and sandy silt. Test trenches G06-TP8 through G06-TP10 near the intersection of the Preproduction Stockpile and the East Stockpile, encoungered layers of sand with silt and course grained sand. The trenches were extended to either auger refusal on bedrock, or 20 feet, which was the limit of the backhoe reach. Table 2 summarizes the depth of bedrock at each test trench location.

TABLE 2 SUMMARY OF BEDROCK DEPTHS

	Bedrock Depth Below Existing Grade
Boring Number	(ft)
G06-TP1	Greater than 20
G06-TP2	13.0
G06-TP3	15.0
G06-TP4	13.5
G06-TP5	14.0
G06-TP6	Greater than 20
G06-TP7	3.5
G06-TP8	4.5
G06-TP9	8.5
G06-TP10	8.0
G06-TP11	6.0
G06-TP12	5.0
G06-TP13	9.0
G06-TP14	3.5
G06-TP15	11.5

Groundwater was encountered in approximately one-half of the test trenches during our field investigation. Groundwater was encountered at depths of 13 to 15 feet below the existing ground surface in test trenches G06-TP2, G06-TP3, and G06-TP5 located in the proposed West Waste Stockpile footprint. Groundwater was encountered at depths of 4 to 5 feet below the existing ground surface in test trenches G06-TP8, G06-TP9, G06-TP10, and G06-TP15 in and near the proposed Pre-Production Waste Stockpile footprint. Due to the existing slow draining site soils, it is likely that groundwater did not have time to stabilize within the test trenches prior to backfilling the trenches. Groundwater levels should be expected to fluctuate both seasonally and with changes in precipitation. Groundwater is often found at the soil/bedrock interface.

4.0 LABORATORY TESTING

Laboratory tests were performed to measure index properties of the samples recovered from the test trenches to confirm field classifications and for use in developing correlations with engineering properties of soils encountered. Sieve analysis and moisture content tests were conducted by Braun Intertec Corporation (Braun Intertec) of Hibbing, Minnesota on each soil type obtained, in accordance with American Society for Testing and Materials (ASTM) Test Methods ASTM C-117, C-136, and D2216. Atterberg Limits were determined by Braun Intertec on three of the samples in accordance with ASTM Test Method D4318. Based on test results, soils were characterized according to the Unified Soil Classification System (USCS). The complete sieve analysis and Atterberg Limit test results are included in Appendix B. Table 3 summarizes the percent passing the #200 sieve, the moisture content, plasticity index, and visual classification of each sample.

TABLE 3
SUMMARY OF INDEX TEST RESULTS

Test Trench Number	Sample Depth below	Passing # 200 (%)	Moisture Content	Plasticity Index	USCS Classification
	Existing Grade (ft)		(%)		
G06-TP1	3 – 12	28.6	7.7	-	SM
G06-TP1	12 - 20	37.5	8.5	-	SM
G06-TP2	9 – 13	35.6	16.5	-	SM
G06-TP4	0.5 - 4.5	31.3	7.2	0	SM
G06-TP4	4.5 – 13.5	39.3	7.2	-	SM
G06-TP5	0.5 - 4	51.4	10.1	9	CL
G06-TP5	6 – 14	47.0	12.2	-	SM
G06-TP6	15 – 20	51.7	13.0	-	ML
G06-TP7	0.5 - 3.5	26.5	12.4	-	SM
G06-TP8	2 – 4.5	1.8	7.3	-	SP
G06-TP11	3 – 6	23.9	21.5	-	SM
G06-TP13	4 – 9	26.0	8.0	2	SM
G06-TP14	0.5 - 3.5	46.8	26.9	-	SM
G06-TP15	4 – 11.5	38.8	18.7	-	SM

Additional testing was performed on the fine-grained sample collected from 0.5 to 4 feet below grade in Test Trench G06-TP5. This soil sample was shipped to Golder's soils laboratory in Lakewood, Colorado for additional testing which included a one-dimensional consolidation test (ASTM D2435) and a consolidated-undrained (CU) triaxial shear test (ASTM D4767). These test results are summarized and presented graphically in Appendix B.

The CU triaxial shear test was conducted on a sample extruded from an undisturbed Shelby tube sample. The sample was placed in a triaxial compression chamber, subjected to a confining pressure, and then loaded axially to failure. In the CU test, the test specimen is permitted to drain and consolidate under the confining pressure until the excess pore pressure is equal to zero. The deviator stress is then slowly applied to failure, but the specimen's drainage is not permitted. The in-situ effective stress strength parameters yielded an effective cohesion of zero with an effective friction angle of 34.6 degrees.

The consolidation test was conducted on an undisturbed sample of native clayey soil. The test indicated a coefficient of consolidation (C_v) of 5.3 x 10^{-1} to 9.6 x 10^{-1} square foot per day (ft²/day) and a coefficient of compression (C_c) of 0.05 to 0.13 under the loading range of 1 to 16 kips per square foot (ksf).

Additional testing was also performed on three select samples representing three different foundation soil types (per visual classification). Standard Proctor tests and permeability tests were performed by Braun Intertec on the 0.5- to 4.5-foot sample from test trench G06-TP4, the 0.5- to 3.5-foot sample from test trench G06-TP7, and the 4- to 9-foot sample from test trench G06-TP13. These test results are presented in Appendix B.

The Standard Proctor tests were performed in accordance with ASTM Test Method D698, Method A. The maximum standard Proctor dry density of the site soils ranges from 118.3 to 125.7 pounds per cubic foot (pcf) with an optimum moisture content ranging from 12.4 to 14.2 percent.

Falling head permeability tests were performed in accordance with ASTM Test Method D5084. Permeability test samples were compacted to 95 percent of the maximum standard Proctor dry density at the optimum moisture content. The full test results are summarized and presented graphically in Appendix B. Table 4 summarizes the permeability values for each sample, along with its visual classification. Based on the results the Phase I field geotechnical field and permeability testing program, it is possible that the site soils may be excavated and placed as low permeability soil liner, as the permeability ranges from 1.1 x 10⁻⁷ to 2.0 x 10⁻⁷ cm/sec. The availability and characteristics of the site soils for use as a soil liner should be further evaluated as part of the Phase II field program conducted to support final design.

TABLE 4
SUMMARY OF PERMEABILITY TEST RESULTS

Test Trench Number	Sample Depth (Below Existing Grade)	Coefficient of Permeability at 95% Compaction	USCS Visual Classification
G06-TP4	0.5 - 4.5 ft	$1.35 \times 10^{-7} \text{ cm/sec}$	SM
G06-TP7	0.5 - 3.5 ft	2.04 x 10 ⁻⁷ cm/sec	SM
G06-TP13	4 – 9 ft	1.06 x 10 ⁻⁷ cm/sec	SM

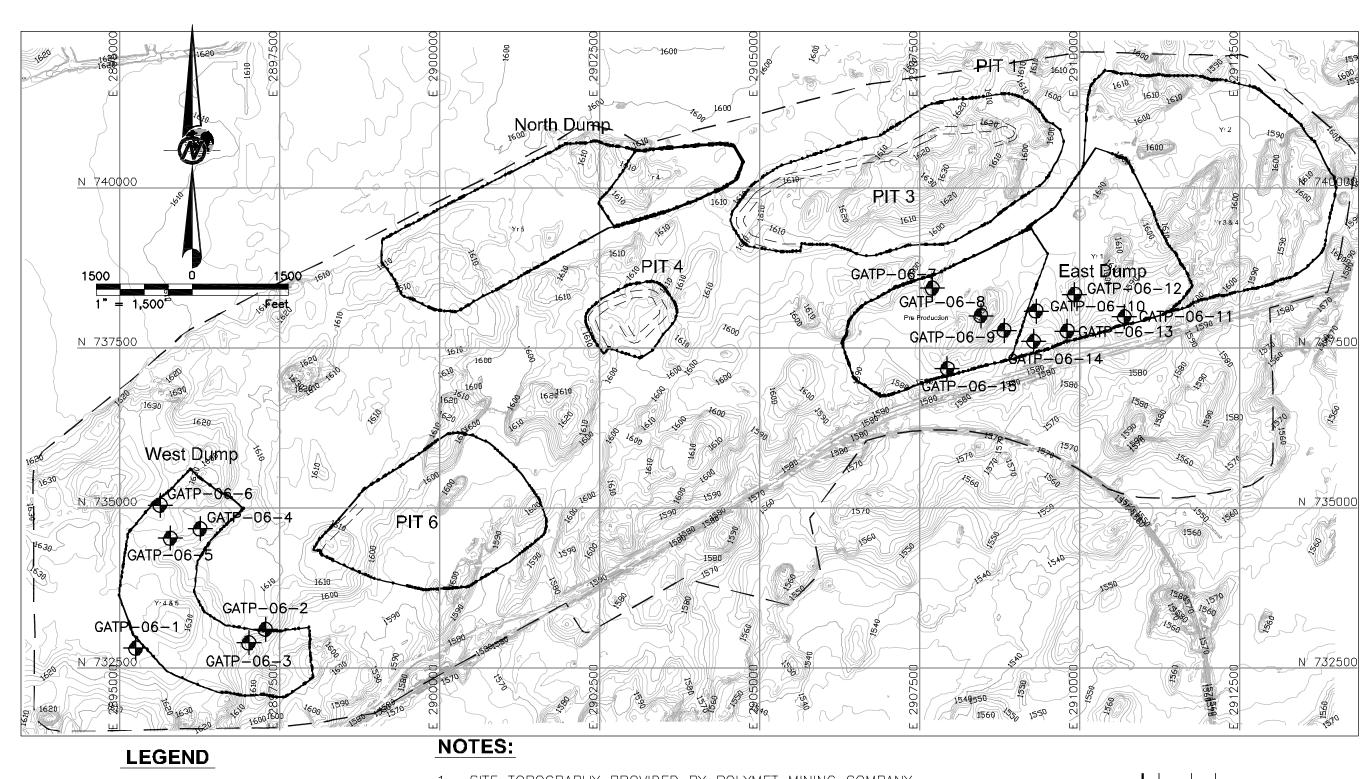
5.0 CLOSING

We appreciate the opportunity to provide engineering design support to PolyMet Mining Corporation for the NorthMet Project. If you have questions or require additional information, please contact Brent Bronson at (303) 980-0540.

Sincerely,

GOLDER ASSOCIATES, INC.

Amy C. Thorson, P.E. Senior Engineer


amy Thorson

MN License No. 42917

Brent R. Bronson, P.E.

Principal and Project Manager

FIGURES

WASTE DUMP / PIT BOUNDARIES

PROJECT BOUNDARY

EXISTING TOPOGRAPHY

EXISTING ROADS

GOLDER TEST PIT, APRIL 2006

1. SITE TOPOGRAPHY PROVIDED BY POLYMET MINING COMPANY.

2. WASTE STOCKPILE FOOTPRINTS PROVIDED BY POLYMET MINE PLANNERS, FEBRUARY 2006

\triangle	6/6/06	KFM	ISSUED WITH GEOTECHNICAL REPORT	KFM	KFM	BRB
REV	DATE	DES	REVISION DESCRIPTION	CADD	CHK	RVW
PR0	JECT		POLYMET MINING CORPORATION			

MINE WASTE STOCKPILE DESIGN HOYT LAKES, MINNESOTA

TEST TRENCH LOCATION MAP

	Р
	D
(Golder	7
Associates	C
Denver, Colorado	R

PROJECT	ΓNo.	053-2209	FILE
DESIGN	DLG	3/22/06	SCA
CADD	DLC	3/23/06	
CHECK	KFM	3/23/06	
REVIEW	BRB	3/23/06	

FIGURE 1

APPENDIX A LOGS OF TEST TRENCHES

Project No. Number September Sep	Project POLYMET Total Depth 30 feet Polyment Type 6911-11C Surper Date Project North Project Number 052-2269 Date Date Date Date Date Date Date Date	1	À,	Gold	der						LOG OF TEST TRENCH	5	Sheet Number 1
Jation J Location West Area 57281 IN 5749305 Offset from Center Line Elevation Reference —— Quantity Staff M Koreworski Field Crew R Rathrich Part	Station / Location West Area (\$27281 IN, \$74936); Offset from Center Line Elevation Reference Station West Area (\$27281 IN, \$74936); Field Crew R. Radeich Sarrow bass Field Crew R. Radeich Field Crew Field Crew		D AS	SSO	ciates	5					POLYMET	Total Depth Date Begin	20 feet 4/18/06
Query Staff M. Krownski Sengle Data Red Part Part	Support Supp	Statio	on / Loca	ation	We	st Area	. 5272811N	. 574	493	6E		Date End vation Reference	4/18/06
Field Crew R. Raches Data Field Crew R. Raches	Field Crew N. Recombination Field Crew N. Resolution Field Crew N. Re	Equip	oment T	ype	690 E	LC	,, 02/20111	, , ,	.,,,		Weather		
Depth in (ft) Depth in (ft	Death in (t.) Death in (t.	Golde	er Staff	M.	Krzewin		le Data		Т	F	eld Crew R. Radotich		
SUBSURFACE MATERIAL 1	SUBSURFACE MATERIAL			ŀ		Camp	Data		t		Depth in (ft.)		
SUBSURFACE MATERIAL 1	SUBSURFACE MATERIAL		Feet)					peld	<u>e</u>	ے			
SUBSURFACE MATERIAL 1	SUBSURFACE MATERIAL	و	th in		рог	per		Sam	er Le	Grap			
1	1	Method	Dep		Met	Nun		Loc.	Wat	Soil	SUBSUBEACE MATERIA		
1	The service of the se		0							71 14		<u> </u>	
Second	Second		1 -							@	Topsoil		
3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	3		1]		AB						Moist, brown, silty SAND with little to some gravel, cobbles		
A	4 -		2 -		GR	1				0.	(SM)		
A	4 -		3]							0.			
8	A		_							₩.	3.0 - 12.0 Moist, light brown, silty SAND with gravel, few cobbles and boul	ders	
8 -	8 -		4 -									4015	
8 -	8 -		5]							/			
The state of the	7 - 8 - 9 - 10 - 111 - 12 - 13 - 14 - 15 - 16 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1									/ (
8 -	8 -		6 -										
8 -	8 -		7]		~					6			
9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 24 - 80 80 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 25		′ -		RAE	7				/ 8			
10 - 11 - 12 - 13 - 14 - 15 - 16 - 19 - 20 - 21 - 22 - 23 - 24 - 10 - 11 - 12 - 12 - 13 - 14 - 15 - 16 - 16 - 16 - 16 - 16 - 16 - 16	11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25		8 -		5					أفر			
10 - 11 - 12 - 13 - 14 - 15 - 16 - 19 - 20 - 21 - 22 - 23 - 24 - 10 - 11 - 12 - 12 - 13 - 14 - 15 - 16 - 16 - 16 - 16 - 16 - 16 - 16	10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25		9 _							ø			
11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 24 - 24 - 20 - 21 - 22 - 23 - 24 - 24 - 20 - 24 - 20 - 24 - 24 - 20 - 24 - 24	11- 12- 13- 14- 15- 16- 20- 21- 22- 23- 24- 25	11011	´ -							**			
11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 24 - 24 - 20 - 21 - 22 - 23 - 24 - 24 - 20 - 24 - 20 - 24 - 24 - 20 - 24 - 24	11- 12- 13- 14- 15- 16- 20- 21- 22- 23- 24- 25	cave	10 -							/0			
12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 24 - 24 - 20 - 21 - 22 - 23 - 24 - 24 - 20 - 24 - 20 - 24 - 20 - 24 - 20 - 24 - 24	12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25	ži	11 -							9			
13 - 14 - 15 - 16 - 19 - 20 - 21 - 22 - 23 - 24 - 24 - 24 - 25 - 24 - 25 - 24 - 26 - 27 - 27 - 27 - 27 - 27 - 27 - 27	13 - 14 - 15 - 16 - 19 - 20 - 21 - 22 - 23 - 24 - 25									100			
13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 24 - 24 - 25 (SM) (SM)	13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 25 - 25 - 25 - 25 - 25 - 25		12 -						1	6	12.0 - 20.0		
14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 24 - 24 - 25 - 24 - 25 - 24 - 25 - 24 - 25 - 24 - 25 - 25	14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25		13								Moist to wet, gray, silty SAND, little to some gravel, cobbles and (SM)	boulders	
15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 24 - 800	15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 25 - 25 - 25 - 25 - 25 - 26 - 27 - 27 - 27 - 27 - 27 - 27 - 27		-							/· o\			
16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 24 - 80 - 10 - 10 - 10 - 10 - 10 - 10 - 10	16 - R W S S S S S S S S S S S S S S S S S S		14 -							0			
16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 24 - 80 - 10 - 10 - 10 - 10 - 10 - 10 - 10	16 - R W S S S S S S S S S S S S S S S S S S		15 -										
17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 24 - BOH 20 ft. Notes: No bedrock encountered.	17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 25 - 25 - 25 - 25 - 25 - 26 - 27 - 27 - 27 - 27 - 27 - 27 - 27		-		g								
17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 24 - BOH 20 ft. Notes: No bedrock encountered.	17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 25 - 25 - 25 - 25 - 25 - 25		16 -		βRΑ	3				/ o.			
18 - 19 - 20 - 21 - 22 - 23 - 24 -	18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 25 - 25 - 25 - 26 - 27 - 27 - 27 - 27 - 28 - 28 - 28 - 28		17 -		J								
19 – 20 – 21 – 22 – 23 – 24 – Notes: No bedrock encountered.	19 - 20 - 21 - 22 - 23 - 24 - 25 - 25 - 25 - 25 - 25 - 26 - 27 - 27 - 27 - 27 - 27 - 27 - 28 - 28		+										
20 – 21 – 22 – 23 – 24 – Notes: No bedrock encountered.	20 - 21 - 22 - 23 - 24 - 25 - 25 - 25 - 20 - 20 - 20 - 20 - 20		18 -										
20 – 21 – 22 – 23 – 24 – Notes: No bedrock encountered.	20 - 21 - 22 - 23 - 24 - 25 - 25 - 25 - 20 - 20 - 20 - 20 - 20		19 -							j			
21 – 22 – 23 – 24 – Notes: No bedrock encountered.	21 - 22 - 23 - 24 - 25 - 25 - 25 - 25 - 25 - 26 - 27 - 27 - 27 - 28 - 28 - 28 - 28 - 28		4							9			
21 –	21 - Notes: No bedrock encountered. 22 - 23 - 24 - 25 - 25 - 25	\dashv	20 -						1				
22 – 23 – 24 – No bedrock encountered.	22 -		21							20 ft			
23 - 24 -	23 - 24 - 25 -												
24 -	24 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -		22 -										
24 -	24 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -		23										
	25												
25			24 –										
			25										

Test PI Number O66-TPC Total Doph 13 Ret 14 Number 15 Nu		older					LOG OF TEST TRENCH	\$	heet Number 1
Project Number District Date Rend 4/18/06 Date Rend 4/	W As	sociat	es		D,	miert	POLYMET		G06-TP2
Date End 4/18/10 A 18/10 A 18/							Number 053-2209		
Pick Crew R Radotick Sample Date Pick Crew R Radotick Pick Crew Rado								Date End	4/18/06
Second							Offset from Center Line	Elevation Reference	
Sample Date Depth in (ii) 1							eld Crew R. Radotich		
The color of the				ole Data			Ground Water Data		
SUBSURFACE MATERIAL	etî				- l				
SUBSURFACE MATERIAL	n (Fe	_	_ ا		mple	abh			
SUBSURFACE MATERIAL	Depth in	ethoc	equin		oc. Sa	oil Gr	Symbol <u>▼</u>		
1		Σ	Z		≥ ۲	Š	SUBSURFACE MA	ATERIAL	
SM S-9 0 Moist, brown, silty SAND, little to some gravel, little silt, cobbles and boulders (SM) Moist, brown, silty SAND, some silt, with gravel, cobbles and boulders (SM) 9 -	7 0 1					7/1/			•
SM S-9 0 Moist, brown, silty SAND, little to some gravel, little silt, cobbles and boulders (SM) Moist, brown, silty SAND, some silt, with gravel, cobbles and boulders (SM) 9 -	1 -	RAI	-			A	0.5 - 1.5		
13 - 9 Moist, brown, silty SAND, little to some gravel, little silt, cobbles and boulders (SM) 9 - 13 0		ت ا				688		bbles	ſ
S -							1.5 - 9.0	-1.1.1	
5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 18 - 19 - 10 - 10 - 10 - 10 - 10 - 10 - 10	3 -					/ 0	Moist, brown, silty SAND, little to some gravel, little silt, c (SM)	obbles and boulders	
5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 18 - 19 - 10 - 10 - 10 - 10 - 10 - 10 - 10	,					0.			
8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	4 -								
8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	5 -	AB							
8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 -	-	GR	(1			/o.			
8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 -	6 -								
8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 -	7 -								
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 24 16 17 18 19 10 10 10 10 10 10 10						Ø			
10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	8 -					å			
Wet, brown, silty SAND, some silt, with gravel, cobbles and boulders (SM) Wet, brown, silty SAND, some silt, with gravel, cobbles and boulders (SM) Notes: Bedrock encountered at 13.0 feet.	9 -						0.0. 12.0		
111 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 24 -	-					XX	Wet, brown, silty SAND, some silt, with gravel, cobbles an	d boulders	
12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 15 - 16 - 17 - 18 - 19 - 19 - 10 - 10 - 10 - 10 - 10 - 10	10 -	_				10	(SM)		
12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 15 - 16 - 17 - 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19	11 -	RAF	3			6			
13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 18 - 19 - 10 - 10 - 10 - 10 - 10 - 10 - 10	12	ت ا							
14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 24 -	12 -								
14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 24 -	13 -					70.			
Bedrock encountered at 13.0 feet. 15 -						13 ft			
16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 -	14 -								
17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 -	15 -								
17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 -	1.6								
18 - 19 - 20 - 21 - 22 - 23 - 24 - 24 -	16 -								
19 - 20 - 21 - 22 - 23 - 24 - 24 -	17 -								
19 - 20 - 21 - 22 - 23 - 24 - 24 -									
20 - 21 - 22 - 23 - 24 -	18 -								
21 - 22 - 23 - 24 -	19 -								
21 - 22 - 23 - 24 -									
22 - 23 - 24 -	20 -								
23 - 24 -	21 -								
23 - 24 -									
24 -	22 –								
	23 –								
	24 -								
					\perp	_			

		Gold	er						LOG OF TEST TRENCH	Sheet Number
•	D AS	SSOC	er iates						POLYMET Number 053-2209	Test Pit Number G06-TP: Total Depth 15 feet Date Begin 4/18/06
Statio	on / Loc	ation	Wes	st Area. 5	5272836N.	. 575	474	4E	Offset from Center Line	Date End4/18/06 Elevation Reference
quip	oment T	ype _	690 El	LC					Weather	
iold	er Staff	M. K	rzewin	ski Sample				Fi	eld Crew R. Radotich Ground Water Data	
									Depth in (ft.) 13 Time 08:55	
	(Feet					Sampled	evel	l K	Date 4/18/06	
	Depth in (Feet)		Method	Number		San	Water Level	Soil Graph	Symbol <u>T</u>	
			Me	Ž		Loc.	M	S	SUBSURFACE MA	ATERIAL
	0							<u> </u>	0.0 - 0.5	
	1 -							A	Topsoil 0.5 - 3.5	
	2 -		GRAB	_				10	Moist, reddish-brown, silty SAND with gravel, few cobbles (SM)	3
	-		GR					0		
	3 -							/ /		
	4 -							1	3.5 - 15.0 Moist to wet, grayish brown, silty SAND, some silt, with g	ravel cobbles and boulders
								/ 1	(SM)	ravel, coopies and boulders
	5 -							/		
	6 -									
	7									
	7]							/o ;		
	8 -							/ 8		
	9 -		ĄВ					<i>,</i> 0-		
			GRAB	2				Ø.		
	10 –							Ø		
	11 -							9		
	12 -									
	-						_	10		
	13 –						Ţ	888		
	14 -							10		
								/o.:		
	15 -							BOH 15 ft.		
	16 -							15 16	Notes:	
	17 -								Bedrock encountered at 15.0 feet.	
	17									
	18 -									
	19 -									
	20									
	20 –									
	21 -									
	22 -									
	22									
	23 -									
- 1										
	24 –									

	ZA	GAI	der						LOG OF TEST TRENCH	\$	Sheet Number 1
•	D A	SSO	lder ociates	5		_				Test Pit Number	G06-TP4
						F	Pro Pro	ject iect	POLYMET nber 053-2209	Total Depth _ Date Begin	
							10	,jcci	055-220)	Date End	4/17/06
					, 5273379N,	5752	242	Ε		Elevation Reference	
			690 E						Weather Crew R. Radotich		
JOIG	ei Stai	I IVI.	Krzewin		le Data			FI	Ground Water Data		
	<u> </u>								e		
	Depth in (Feet)					Sampled	, ve	h	e l		
	th in		Method	Number		. San	Water Level	Soil Graph	nbol		
	Dep		Met	N N		Loc.	۸a	Soil	SUBSURFACE MA	ΛΤΕΡΙΔΙ	
-	0 +					\Box		<u> </u>	0-0.5	VILIVIAL	
	1 -							@	psoil		
	1							/ /	i - 4.5 sist to wet, brown, silty SAND with gravel, little silt, cob	bles	
	2 -		GRAB					/. O.	M)		
	, -		S.					0			
	3 -							/ . /			
	4 -					Н		/ (833			
								/o ØØØ	- 13.5		
	5 -							742	oist, grayish-brown, silty SAND, some gravel, few cobble	es, some silt	
.	6							0.	M)		
	-							/			
	7 -							/ /			
1	8 -							1			
			l _B					/o.			
	9 -		GRAB	2				/			
	10 -							Þ			
	10							ø			
	11 -							XX			
	12 -							/			
	127							9.,			
	13 -							10			
	1.4							вон			
	14 -						1	3.5 f	tes:		
	15 -								drock encountered at 13.5 feet.		
	16 -										
	17 -										
	18 -										
	19 -										
	20 -										
	21 -										
	21 7										
	22 -										
	22										
	23 -										
	24 -										
\dashv	25 +										

(\mathfrak{D}^{\bullet}	Golder SSOCiat						LOG OF TEST TRENCH		Sheet Number 1
•	D AS	ssociat	tes			Pro	oject	POLYMET	Test Pit Number Total Depth	G06-TP5
								Number053-2209		
									Date End	4/17/06
		ation <u> </u>						Offset from Center Line	Elevation Reference	
		M. Krze						Weather		
				mple Data				Ground Water Data Depth in (ft.)		
	(fa							Time		
	Depth in (Feet)				Sampled	Water Level	l dg	Date		
	i bth ii	Method	Ni mpha		S. Sa	ater L	Soil Graph	Symbol		
		ž	Ž	=	Loc		Š	SUBSURFACE MA	ATERIAL	
	0						3/1/	0.0 - 0.5		
	1 -							Topsoil 0.5 - 4.0		
	4	_						Moist, light brown, sandy lean CLAY, little gravel,		
	2 -	GP A B	[-	-				(CL)		
	3	2	5							
	-									
	4 -					-		4.0 - 6.0		
	5 -	GP AB		4				Moist, reddish-brown, silty SAND, some gravel, few cobble (SM)	es, little to some silt	
	-	8	• •				0.	(OIII)		
	6 -						9	6.0 - 14.0		
	7						/ /	Moist to wet, gray, silty SAND, some silt, some gravel		
	′]						0.	(SM)		
1	8 -						0			
							/ /			
	9 -	_					10			
	10 -	GP AB	, }	,			6			
		ع ا					/ /			
	11 -						0			
	12 -						Ø.			
							/,			
	13 –						/			
_	14 -						9			
							BOH 14 ft.			
	15 -							Notes: Bedrock encountered at 14.0 feet.		
	16 -									
	17 -									
	18 -									
	19 -									
	20 -									
	20									
	21 -									
	22									
	22 -									
	23 -									
		1		1	- 1	1	1			
	24									
	24 -									

1	À	Golder						LOG OF TEST TRENCH	S	heet Number 1 of
(D A	Golder ssociate:	S			Pro	niect	POLYMET		G06-TP6 20 feet
						Pro	oject	Number <u>053-2209</u>	Date Begin	4/17/06
o	,.						_		Date End	4/17/06
		cation <u>We</u> Type <u>690 B</u>		, 5273491N,	575	052	2E	Offset from Center Line Weather	Elevation Reference	
		M. Krzewii					Fi	eld Crew R. Radotich		
			Samp	le Data				Ground Water Data Depth in (ft.) 15		
	eet)				<u>۾</u>	_		Time 17:30		
٦	in (F	þ	ē		Sampled	Leve	raph	Date 4/17/06 Symbol ▼		
Method	Depth in (Feet)	Method	Number		Loc. S	Water Level	Soil Graph			
	0				Ē			SUBSURFACE MA	ATERIAL	(
	-						 .s888	0.0 - 0.5 T ropsoil		
-	1 -						**	0.5 - 15.0 Moist, brown, silty SAND with gravel, little to some silt, for	ew cobbles and boulders	
-	2 -						. 0.	(SM)	w cooles and boulders	
	_ =						0			
*	3 -						/			
-	4 -									
	_ +						ζο. 			
	5 -						10			
	6 -						d			
	7						~ @			
	7 -	m					10			
	8 -	GRAB	_				9			
	9 -						(t			
Excavation							0			
cava	10 -						88			
Ex	11 -						o			
	+						/:			
	12 –						7.0			
	13 -									
	-						0			
	14 –						/.			
	15 -					¥	77	15.0 - 20.0		
	16							Waterbearing, gray, sandy SILT		
	16 -							(ML)		
	17 -	l g								
	18 -	GRAB	2							
	10									
	19 -									
	20 -						//			
	20						BOH 20 ft.			•
	21 -							Notes: No bedrock encountered		2
								100 bearock encountered		2
	22 -				1	1				
	22 -									
	22 -									
										2
	23 -									2

1		Gol	lder						LOG OF TEST TRENCH	\$	Sheet Number 1
'	D A	SSO	lder ociates	3						Test Pit Number	G06-TP7
							Pro	oject	POLYMET	Total Depth	
							Pro	oject	Number <u>053-2209</u>	Date Begin Date End	4/17/06
Statio	on / Lo	catio	n Pre	-Produc	ction Area. 5	52745	524	N. 5'	Offset from Center Line		
			690 E						Weather		
			Krzewin	ski				Fi	eld Crew R. Radotich		
				Samp	le Data	_			Ground Water Data Depth in (ft.)		
	(jet)					٦			Time		
	n (Fe		_	<u>.</u>		Sampled	-eve	abh	Date		
	Depth in (Feet)		Method	Number		Loc. Sa	Water Level	Soil Graph	Symbol		
:			Σ	Ž		13	>	ŭ	SUBSURFACE MA	ATERIAL	
	0 +							<u> </u>	0.0 - 0.5		
	1 -								Topsoil 0.5 - 3.5		
	1		l m					/ .	Moist, brown, silty SAND with gravel, little silt, few cobble	es and boulders	
	2 -		GRAB	-				0.	(SM)		
1	, †							o			
	3							/			
	4 -							BOH 3.5 ft			
									Notes:		
	5 -								Bedrock encountered at 3.5 feet		
	6 -										
	٦										
	7 -										
	8 -										
	9 -										
	10 -										
	11 -										
	12 -										
	13 -										
	1.4										
	14 -										
	15 -										
	16 -										
	17 -										
	17										
	18 -										
	19 -										
	20 -										
	21 -										
	22										
	22 -										
	23 -										
	24 -										
	25 —			L_	<u></u> _			L			
1	23					\perp			CHECK		DATE:

/		ldor						LOG OF TEST TRENCH	S	heet Number 1
(Ass	older ociate:	S				oject			
						PIC	ojeci	Number <u>053-2209</u>	_ Date Begin Date End	4/17/06
				ction Area, 5	5274	393	N, 57	8958E Offset from Center Line	Elevation Reference	
	pment Type ler Staff M							Weathereld Crew R. Radotich		
Old	iei Staii N	1. Kizewii		le Data			T -	Ground Water Data		
	Ð.							Depth in (ft.) 4.5 Time 10:45		
	(Рее				Sampled	. le	듄	Date 4/17/06		
	Depth in (Feet)	Method	Number		Sar.	Water Level	Soil Graph	Symbol <u>T</u>		
		Σ	ž		Lo Si	×	So	SUBSURFACE MA	TERIAL	
	0 +						9. 2	0.0 - 2.0		
	1 -	GRAB	_				///	Moist, reddish-brown, silty SAND, little gravel, little to som (SM)	e silt	
	-	Ğ					0	(OH)		
	2 -						σ.	2.0 - 4.5		
	3 -	l g						Moist, brown, medium to coarse grained SAND and GRAV (SP)	EL, trace silt,	
	-	GRAB	2				0.			
	4 -					Ţ	0			
	5 -						BOH 4.5 ft.			
							1.0 10	Notes:		
	6 -							Bedrock encountered at 4.5 feet		
	7									
	,									
	8 -									
	9 –									
	10 -									
	11 -									
	12 -									
	13 -									
	14 -									
	15 -									
	1.6									
	16 -									
	17 -									
	10									
	18 -									
	19 –									
	20 -									
	207									
	21 -									
	22 -									
	22 7									
	23 –									
	24 -									
	-									
	25					1	1			

DATE:

CHECKED:

	PA	Gol	der						LOG OF TEST TRENCH	5	heet Number 1
'	D A	SSO	der ciates	5			Б.	4	DOLLAND	Test Pit Number	G06-TP9
									POLYMET Number 053-2209	Total Depth Date Begin	8.5 feet 4/17/06
							,	ojeci	033-2207	Date End	4/17/06
					ction Area,	5274	323	3N, 5	9069E Offset from Center Line	Elevation Reference	
			690 E Krzewin						Weathereld Crew R. Radotich		
Joide	ei Stail	1V1.	Kizewii		le Data		Τ		Ground Water Data		
	æ l								Depth in (ft.) 4.5 Time 11:40		
	Depth in (Feet)					Sampled	. e	اج	Date 4/17/06		
	th in		Method	Number		San	Water Level	Soil Graph	Symbol <u>¥</u>		
	Dep		Σ e	N N		Loc.	Wa	Soi	SUBSURFACE M/	ΔΤΕΡΙΔΙ	
\dashv	0 +							31 1/2	0.0 - 0.5	TILITAL	
	1 -							₩	Topsoil 0.5 - 4.0		
	1]								Moist, brown, silty SAND, little to some gravel, some silt,	few cobbles and boulders	
	2 -		GRAB	_				<i>i</i>	(SM)		
	, †		E					0			
,	3 -										
	4 -						-		4.0 - 8.5		
	_ +						₹	**	Wet, brown, medium to coarse grained SAND and GRAVE	EL, little silt, few cobbles	
1	5 -							0.	(SP-SM)		
	6		AB					0			
	_ +		GRAB	2							
	7 -							*			
	8]							· o			
_	-						-	BOE			
	9 -							8.5 fl	Notes		
	10 -								Notes: Bedrock encountered at 8.5 feet		
	11 -										
	12 -										
	12										
	13 -										
	14 -										
	14										
	15 -										
	16										
	16 -										
	17 -										
	10										
	18 -										
	19 -										
	20										
	20 –										
	21 -										
	22 -										
	23 -										
	-										
	24 –										
					1						

		Gol	der ciates						LOG OF TEST TRENCH	S	Sheet Number 1 of 1
		\SSO	ciates	•			P۳	oject	POLYMET	Test Pit Number Total Depth	G06-TP10 8 feet
									Number <u>053-2209</u>	Date Begin Date End	4/17/06
Stat	tion / Lo	cation	Eas	t Area.	5274415N.	579	221	E	Offset from Center Line	Date End Elevation Reference	4/17/06
Equ	ipment	Туре	690 E	LC	027111011,				Weather		
Gold	der Staf	f M.	Krzewir		le Data		Τ	<u>Fi</u>	eld Crew R. Radotich Ground Water Data		
	a					T_			Depth in (ft.) 4 Time 11:10		
	Depth in (Feet)		-	<u></u>		Sampled	Level	abh	Date 4/17/06		
Method	Septh		Method	Number		Loc. Sa		Soil Graph	Symbol ¥		
	0 +					+	_	2/ 1/2	SUBSURFACE MAT	TERIAL	0
									Topsoil		
									0.5 - 4.0 Moist, brown, silty SAND, little gravel, some silt, few cobble	es	1
†	2 -		GRAB	-				/ O-	(SM)		2
 	3		Ö					0			3
vatio	4 -						Ţ				
r Excavation			g					Ö	4.0 - 6.0 Wet, brown, medium to coarse grained SAND and GRAVEI		 4
"	5 -		GRAB	2				i o	(SP)		5
-	6 -								6.0 - 8.0		6
	7]		GRAB	3					Wet, brown, silty SAND with gravel, little silt, some gravel (SP-SM)		7
			£5					/: 0. :/:			
	8 -							BOH 8 ft.			8
-	9 -								Notes: Bedrock encountered at 8.0 feet		9
-	10 -								Bedfock electantered at 6.0 feet		10
	11 -										1.1
	11										11
-	12 -										12
-	13 -										13
	14 -										14
	15 -										15
-	16 -										16
-	17 -										17
<u> </u> 	10										10
5	18 -										18
-	19 -										19
-	20 -										20
	21 -										21
-	22 -										22
-	23 -										23
-	24 -										24
	25										
ζ[—	25 +					Т			CHECKE		25 DATE:

	Â	Gol Asso	der ciates	5			Dro	nioat		est Pit Number	
									Number 053-2209 D	otal Depth ate Begin	4/17/06
Sto	tion / L	ncation) Eco	et Aron	527/200NT				D	ate End	4/17/06
Equ	iipment	Type	690 E	LC	32/4300IN,	319	041.		Weather		
Gol	der Sta	ff M.	Krzewir		le Data		T	Fi	Id Crew R. Radotich Ground Water Data		
	Đ.								Depth in (ft.) Time		
	Depth in (Feet)			<u></u>		Sampled	Fevel	aph	Date		
Method	Depth		Method	Number		Loc. S	Water Level	Soil Graph	Symbol		
	0 -			_		F		7/1/2	SUBSURFACE MATERIAL 0.0 - 0.5	_	0
L	1 -							***	Topsoil 0.5 - 3.0		
	-		GRAB	_				10	Moist, reddish-brown, silty SAND with gravel, some silt, cobbles (SM)		
tion	2 -		Š						(UIII)		2
ı Excavation	3 -						-	9	3.0 - 6.0		3
Ex	4 -		l B					/ /	Moist to wet, brown, fine to coarse grained silty SAND and GRAV (SM)	EĹ,	4
_	5 -		GRAB	2				/			5
	-							1 1			
	6 -							BOH 6 ft.			 6
_	7 -								Notes: Bedrock encountered at 6.0 feet		7
_	8 -										8
_	9 -										9
_	10 -										10
_	11 -										1
-	12 -										12
-	13 -										13
_	14 -										14
_	15 -										1:
-	16 -										10
-	17 -										1′
-	18 -										1:
_	19 -										19
-	20 -										20
-	21 -										2
-	22 -										22
_	23 -										2:
_	24 -										24
- - - -											
	25 -								CHECKED:		2: DATE:

DATE:

CHECKED:

itati			der ciates		5274404N		Pro		POLYMET Number053-220)9		Date Begin Date End	5 feet 4/17/06 4/17/06
qui	ipment 1	Гуре	690 E	LC) <u>2</u> / 1 1) 1 1 ,					Weather		Lievation Reference	
olo	der Staff	M.	Krzewin	ski Sample	- Data			Fi	Id Crew R. Radotic Ground Wa	h			
	Depth in (Feet)		Method	Number		Loc. Sampled	Water Level	Soil Graph	Depth in (ft.) Time Date Symbol		SUBSURFACE MA	ΓΕΡΙΔΙ	
	0 +								0.0 - 0.5				
LACAVALIOII	2 - 3 -		GRAB	1				/*/Z / 0	(SM)		little to some silt, cob		
	4 -		GRAB	2				/ 0 /	3.0 - 5.0 Moist, grayish-brow (SM)	n, silty SAND with	gravel, little to some	silt, few cobbles	
	6 -							BOH 5 ft.	Notes: Bedrock encountere	ed at 5.0 feet			
	7 -												
	8 -												
	9 -												
	10 -												
	11 -												
	12 -												
	13 -												
	14 -												
	15 -												
	16 -												
	17 -												
	18 -												
	19 -												
	20 -												
	21 -												
	22 -												
	23 -												
	24 -												
	25 —												

($\widehat{\mathbf{Z}}$ _G	older sociate						LOG OF TEST TRENCH	Sheet Number 1
•	U As	sociate	S						Test Pit NumberG06-TP13
								POLYMET	Total Depth 9 feet Date Begin 4/17/06
						Pro	oject	Number053-2209	Date Begin4/17/06 Date End4/17/06
Stati	on / Loca	tion <u>Eas</u>	st Area,	5274320N,	579.	369	Е	Offset from Center Line	
		pe <u>690 E</u>						Weather	
Gold	ler Staff	M. Krzewii		le Data		Г	Fi	eld Crew R. Radotich Ground Water Data	
			Jame	Data .		1		Depth in (ft.)	
	Depth in (Feet)				peld	<u>e</u>	_	Time Date	
ᄝ	ni n	8	per		Sampled	Water Level	Soil Graph	Symbol	
Method	Dept	Method	Number		Loc.		Soil		
	0						317.	SUBSURFACE M/ 0.0 - 0.5	ATERIAL
	-							Topsoil	Γ
	1 -							0.5 - 4.0 Moist, reddish-brown, silty SAND with gravel, little to som	
	$\begin{bmatrix} 2 \end{bmatrix}$	l e					/ N	(SM)	ie siit, iew coobies and boulders
		GRAB	-				6		
	3 -								
uo l	4 -								
Ехсауацоп	4]						輟	4.0 - 9.0 Moist to wet, grayish-brown, silty SAND with gravel, little	to some silt four applies and
2XC	5 -							boulders	to some sin, iew coopies and
٦	-						/ o-	(SM)	
	6 -	GRAB	7				0		
	7	GR							
	-						***		
	8 -						/o /2		
	9 -						8		
							BOH 9 ft.		
	10 -							Notes: Bedrock encountered at 9.0 feet	
	11							Bedrock encountered at 9.0 feet	
	11 -								
	12 -								
	13 -								
	14 –								
	15 -								
	16 -								
	10								
	17 –								
	10								
	18 -								
	19 –								
	20 –								
	21 -								
	22 –								
	22								
	23 -								
	24 -								
	25								
\neg	25							CHECk	KED: DATE:

(2	older sociates	•					LOG OF TEST TRENCH		Sheet Number 1 of
Ì	O AS	sociales	•			Pro Pro	ject ject	POLYMET Number 053-2209	Test Pit Number Total Depth Date Begin	3.5 feet 4/17/06
Equi	pment Ty	ntion <u>Eas</u> pe <u>690 E</u> M. Krzewin	LC	5274271N, 5	5792	210I		Offset from Center Line Weathereld Crew R. Radotich	Date End Elevation Reference	
				le Data				Ground Water Data Depth in (ft.)		
Method	Depth in (Feet)	Method	Number		Loc. Sampled	Water Level	Soil Graph	Time Date Symbol		
_	0							SUBSURFACE MA	TERIAL	(
Excavation	1 - 2 -	GRAB	1				0.	m :	v cobbles	
_	3 -						/ /			
- -	4 - 5 -						BOH 3.5 ft.	Notes: Bedrock encountered at 3.5 feet		5
-	6 -									(
	7 - 8 -									
-	9 -									!
-	10 -									1
	12 -									1
	13 -									1
	15 -									1
	16 -									
.	17 -									1
.	18 -									
.	19 -									1
	20 -									2
-	21 -									2
-	22 -									2
-	23 -									2
-	24 -									2
	25							CHECK		2

		Gold	der ciates	•					LOG OF TEST TRENCH		Sheet Number 1
`		1990(CIAICS	•				oject oject	POLYMET Number 053-2209		4/17/06
Equi	ipment	Type	690 E	LC	ction Area, 52	274	143		8799E Offset from Center Line Weather	Date End Elevation Reference	4/17/06
Gold	der Staf	ff M.	Krzewin		le Data			Fi	eld Crew R. Radotich Ground Water Data		
Method	Depth in (Feet)		Method	Number		Loc. Sampled	Water Level	Soil Graph	Depth in (ft.) 5 Time 09:40 Date 4/17/06 Symbol ▼	TEDIAL	
	0 -							7 <u>1 1</u>	SUBSURFACE MA 0.0 - 1.0	ATERIAL	
	1 -							<u>√. 7</u>	Topsoil 1.0 - 4.0		
	2 -		В					7.2	Moist, brown, silty SAND with gravel, some gravel, some s (SM)	ilt	
	3 -		GRAB	-				0 L			
	4 -							9	4.0 - 11.5 Moist, grayish-brown, silty SAND with little gravel, little to (SM)	sama silt aabblas and l	aouldora
ıtıon	5 -						Ā	100	(SM)	some sin, coopies and t	odulacis
Excavation	6 -							0.,			
тì	7 -		~~								
	8 -		GRAB	7				(* ***			
	9 -)								
	-							بر فر			
	10 -										
	11 -							//:-			
	12 -						1	BOH 11.5 ft	Notes:		
	13 -								Bedrock encountered at 11.5 feet		
	14 -										
	15 -										
	16 -										
	17 -										
	18 -										
	19 -										
	20 -										
	21 -										
	22 -										
	23 -										
	24 -										
	25 -										
					1	_	<u> </u>		CHECK		DATE:

DATE:

APPENDIX B

SIEVE ANALYSES
ONE-DIMENSIONAL CONSOLIDATION
TRIAXIAL SHEAR TEST REPORT
MOISTURE DENSITY RELATIONSHIPS
PERMEABILITY TEST DATA

BRAUN REVISED

Braun Intertec Corporation

3404 15th Ave East

Suite 2 Hibbing, MN 55746 Phone: 218.263.8869 Fax: 218.263.6700

Web: braunintertec.com

Sieve Analysis of Aggregate Sample AASHTO T27 & T11

Date:

August 28, 2006

Project No.: HB-06-01173

Client: Ms. Amy C. Smith, PE

Senior Engineer, Manager Duluth Operations

Golder Associates, Inc.

1346 West Arrowhead Road, Box #304

Duluth, MN 55811

Project Description: Test Pit Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002)

Field Data:

Braun Sample No.:

6

Date Sampled:

N/A

Date Received:

4-19-06

Date Tested:

4-26-06

Classification:

SM-SILTY SAND, fine to medium grained, with GRAVEL, brown

Sample Location:

TP #1, Sample #2, 3'-12'

Laboratory Results:

Sieve Size	% Passing
3/4"	100
3/8"	89
#4	82
#10	74
#20	64
#40	55
#100	39
#200	28.6

Remarks: Natural moisture content = 7.7%

REVISED

Braun Intertec Corporation

3404 15th Ave East Suite 2

Hibbing, MN 55746

Phone: 218.263.8869 218.263.6700 Fax: Web: braunintertec.com

Sieve Analysis of Aggregate Sample **AASHTO T27 & T11**

Date:

August 28, 2006

Project No.: HB-06-01173

Client: Ms. Amy C. Smith, PE

Senior Engineer, Manager Duluth Operations

Golder Associates, Inc.

1346 West Arrowhead Road, Box #304

Duluth, MN 55811

Project Description: Test Pit Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002)

Field Data:

Braun Sample No.:

Date Sampled:

N/A

Date Received:

4-19-06

Date Tested:

4-27-06

Classification:

SM-SILTY SAND, very fine to fine grained, with some Gravel,

grayish brown

Sample Location:

TP #1, Sample #3, 12'-20'

Laboratory Results:

Sieve Size	% Passing
3/4"	100
3/8"	91
#4	87
#10	80
#20	72
#40	64
#100	48
#200	37.5

Remarks: Natural moisture content = 8.5%

Project Manager

BRAUN REVISED

Braun Intertec Corporation

3404 15th Ave East

Suite 2 Hibbing, MN 55746 Phone: 218.263.8869 Fax: 218.263.6700

Web: braunintertec.com

Sieve Analysis of Aggregate Sample **AASHTO T27 & T11**

Date:

August 28, 2006

Project No.: HB-06-01173

Client: Ms. Amy C. Smith, PE

Senior Engineer, Manager Duluth Operations

Golder Associates, Inc.

1346 West Arrowhead Road, Box #304

Duluth, MN 55811

Project Description: Test Pit Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002)

Field Data:

Braun Sample No.:

13

Date Sampled:

N/A

Date Received:

4-19-06

Date Tested:

4-28-06

Classification:

SM - SILTY SAND, fine grained, brown

Sample Location:

TP #2, Sample #3, 9'-13'

Laboratory Results:

Sieve Size	<u>% Passing</u>
3/4"	100
3/8"	98
#4	96
#10	89
#20	79
#40	69
#100	· 49
#200	35.6

Remarks: Natural moisture content = 16.5%

Project Manager

3404 15th Ave East Suite 2

Hibbing, MN 55746

Phone: 218.263.8869 Fax: 218.263.6700

Veb: braunintertec.com

Sieve Analysis of Aggregate Sample AASHTO T27 & T11

Date: August 22, 2006

Project No.: HB-06-01173

Client Ms. Amy C. Thorson, PE

Senior Engineer, Manager Duluth

Operations

Golder Associates, Inc.

1346 West Arrowhead Road, Box #304

Duluth, MN 55811

Project Description: Test Pit

Samples, Hoyt Lakes,

Minnesota

(Golder Project # 053-

2209.002)

Field Data:

REVISED

Braun Sample No.: 4

Date Sampled:

N/A

Date Received:

4-19-06

Date Tested:

4-26-06

Classification:

SM - SILTY SAND, fine- to medium-grained, brown

Sample Location:

TP #4, Sample #1, 1/2'-4 1/2'

Laboratory Results:

Sieve Size	% Passing
3/4"	100
3/8"	98
#4	92
#10	83
#20	72
#40	62
#100	44
#200	31.3

Remarks:

Natural moisture content = 7.2%

LL=7, PL=7, PI=0

INTERTEC REVISED

Braun Intertec Corporation

3404 15th Ave East Suite 2

Hibbing, MN 55746

Phone: 218.263.8869 218.263.6700

Web: braunintertec.com

Sieve Analysis of Aggregate Sample **AASHTO T27 & T11**

Date:

August 28, 2006

Project No.: HB-06-01173

Client:

Ms. Amy C. Smith, PE

Senior Engineer, Manager Duluth Operations

Golder Associates, Inc.

1346 West Arrowhead Road, Box #304

Duluth, MN 55811

Project Description: Test Pit Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002)

Field Data:

Braun Sample No.:

Date Sampled:

N/A

Date Received:

4-19-06

Date Tested:

4-25-06

Classification:

SM - SILTY SAND, fine grained, with a little Gravel, grayish brown

Sample Location:

TP #4, Sample #2, 4 1/2-13 1/2'

Laboratory Results:

Sieve Size	% Passing
3/4"	100
3/8"	94
#4	89
#10	82
#20 ⁻	73
#40	65
#100	49
 #200	39.3

Remarks: Natural moisture content = 7.2%

Project Manager

3404 15th Ave East

Suite 2

Hibbing, MN 55746

Phone: 218.263.8869 Fax: 218.263.6700

Web: braunintertec.com

Sieve Analysis of Aggregate Sample AASHTO T27 & T11

Date: April 28, 2006

Project No.: HB-06-01173

Client: Ms. Amy C. Smith, PE

Senior Engineer, Manager Duluth Operations

Golder Associates, Inc.

1346 West Arrowhead Road, Box #304

Duluth, MN 55811

Project Description: Test Pit Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002)

Field Data:

Braun Sample No.:

8

Date Sampled:

N/A

Date Received:

4-19-06

Date Tested:

4-27-06

Classification:

CL – SANDY LEAN CLAY, with a little gravel, grayish brown

Sample Location:

TP #5, Sample #1, 0.5'-4'

Laboratory Results:

Sieve Size	% Passing
3/4"	100
3/8"	93
#4	87
#10	81
#20	75
#40	69
#100	61
#200	51.4

Remarks: Natural moisture content = 10.1%, LL=25, PL=16, PI=9

BRAUN REVISED

Braun Intertec Corporation

3404 15th Ave East

Suite 2 Hibbing, MN 55746 Phone: 218.263.8869 Fax: 218.263.6700

Web: braunintertec.com

Sieve Analysis of Aggregate Sample **AASHTO T27 & T11**

Date:

August 28, 2006

Project No.: HB-06-01173

Client: Ms. Amy C. Smith, PE

Senior Engineer, Manager Duluth Operations

Golder Associates, Inc.

1346 West Arrowhead Road, Box #304

Duluth, MN 55811

Project Description: Test Pit Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002)

Field Data:

Braun Sample No.:

14

Date Sampled:

N/A

Date Received:

4-19-06

Date Tested:

4-28-06

Classification:

SM – SILTY SAND, fine grained, gray

Sample Location:

TP #5, Sample #3, 6'-14'

Laboratory Results:

Sieve Size	% Passing
3/4"	100
3/8"	100
#4	99
#10	96
#20	89
#40	80
#100	62
#200	47.0

Remarks: Natural moisture content = 12.2%

Project Manager

3404 15th Ave East

Suite 2

Hibbing, MN 55746

Phone: 218.263.8869 Fax: 218.263.6700

Web: braunintertec.com

Sieve Analysis of Aggregate Sample AASHTO T27 & T11

Date: April 28, 2006

Project No.: HB-06-01173

Client: Ms. Amy C. Smith, PE

Senior Engineer, Manager Duluth Operations

Golder Associates, Inc.

1346 West Arrowhead Road, Box #304

Duluth, MN 55811

Project Description: Test Pit Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002)

Field Data:

Braun Sample No.:

10

Date Sampled:

N/A

Date Received:

4-19-06

Date Tested:

4-27-06

Classification:

ML-S – SANDY SILT, gray

Sample Location:

TP #6, Sample #2, 15'-20'

Laboratory Results:

Sieve Size	<u>% Passing</u>
3/4"	100
3/8"	100
#4	100
#10	99
#20	96
#40	90
#100	69
#200	51.7

Remarks: Natural moisture content = 13.0%

3404 15th Ave East

Suite 2

Hibbing, MN 55746

Phone: 218.263.8869 Fax: 218.263.6700

Web: braunintertec.com

Sieve Analysis of Aggregate Sample AASHTO T27 & T11

Date: April 28, 2006

Project No.: HB-06-01173

Client: Ms. Amy C. Smith, PE

Senior Engineer, Manager Duluth Operations

Golder Associates, Inc.

1346 West Arrowhead Road, Box #304

Duluth, MN 55811

Project Description: Test Pit Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002)

Field Data:

Braun Sample No.:

11

Date Sampled:

N/A

Date Received:

4-19-06

Date Tested:

4-27-06

Classification:

SM – SILTY SAND, fine to medium grained, with GRAVEL, brown

Sample Location:

TP #7, Sample #1, 0.5'-3.5'

Laboratory Results:

Sieve Size	% Passing
3/4"	100
3/8"	92
#4	83
#10	73
#20	60
#40	39
#100	34
#200	26.5

Remarks: Natural moisture content = 12.4%

3404 15th Ave East

Suite 2

Hibbing, MN 55746

Phone: 218.263.8869 Fax: 218.263.6700

Web: braunintertec.com

Sieve Analysis of Aggregate Sample **AASHTO T27 & T11**

Date:

April 28, 2006

Project No.: HB-06-01173

Client: Ms. Amy C. Smith, PE

Senior Engineer, Manager Duluth Operations

Golder Associates, Inc.

1346 West Arrowhead Road, Box #304

Duluth, MN 55811

Project Description: Test Pit Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002)

Field Data:

Braun Sample No.:

Date Sampled:

N/A

Date Received:

4-19-06

Date Tested:

4-25-06

Classification:

SP - POORLY GRADED SAND, fine to coarse grained, with

GRAVEL, brown

Sample Location:

TP #8, Sample #2, 2-4 1/2'

Laboratory Results:

Sieve Size	% Passing
3/4"	100
3/8"	71
#4	60
#10	47
#20	24
#40	13
#100	4
#200	1.8

Remarks: Natural moisture content = 7.3%

3404 15th Ave East

Suite 2

Hibbing, MN 55746

Phone: 218.263.8869 Fax: 218.263.6700

Web: braunintertec.com

Sieve Analysis of Aggregate Sample **AASHTO T27 & T11**

Date:

April 28, 2006

Project No.: HB-06-01173

Client: Ms. Amy C. Smith, PE

Project Description: Test Pit Samples, Hoyt Lakes, Minnesota

Senior Engineer, Manager Duluth Operations

Golder Associates, Inc.

(Golder Project # 053-2209.002)

1346 West Arrowhead Road, Box #304

Duluth, MN 55811

Field Data:

Braun Sample No.:

3

Date Sampled:

N/A

Date Received:

4-19-06

Date Tested:

4-26-06

Classification:

SM – SILTY SAND, fine to coarse grained, with a little

Gravel, brown

Sample Location:

TP #11, Sample #2, 3'-6'

Laboratory Results:

Sieve Size	% Passing
3/4"	100
3/8"	97
#4	90
#10	77
#20	68
#40	52
#100	34
#200	23.9

Remarks: Natural moisture content = 21.5%

3404 15th Ave East Suite 2

Hibbing, MN 55746

Phone: 218.263.8869 Fex: 218.263.6700

Web: braunintertec.com

Sieve Analysis of Aggregate Sample **AASHTO T27 & T11**

August 22, 2006

Project No.: HB-06-01173

Client Ms. Amy C. Thorson, PE

Senior Engineer, Manager Duluth

Operations

Golder Associates, Inc.

1346 West Arrowhead Road, Box #304

Duluth, MN 55811

Project Description: Test Pit

Samples, Hoyt Lakes,

Minnesota

(Golder Project # 053-

2209.002)

Field Data:

REVISED

Braun Sample No.: 5

Date Sampled:

N/A

Date Received:

4-19-06

Date Tested:

4-26-06

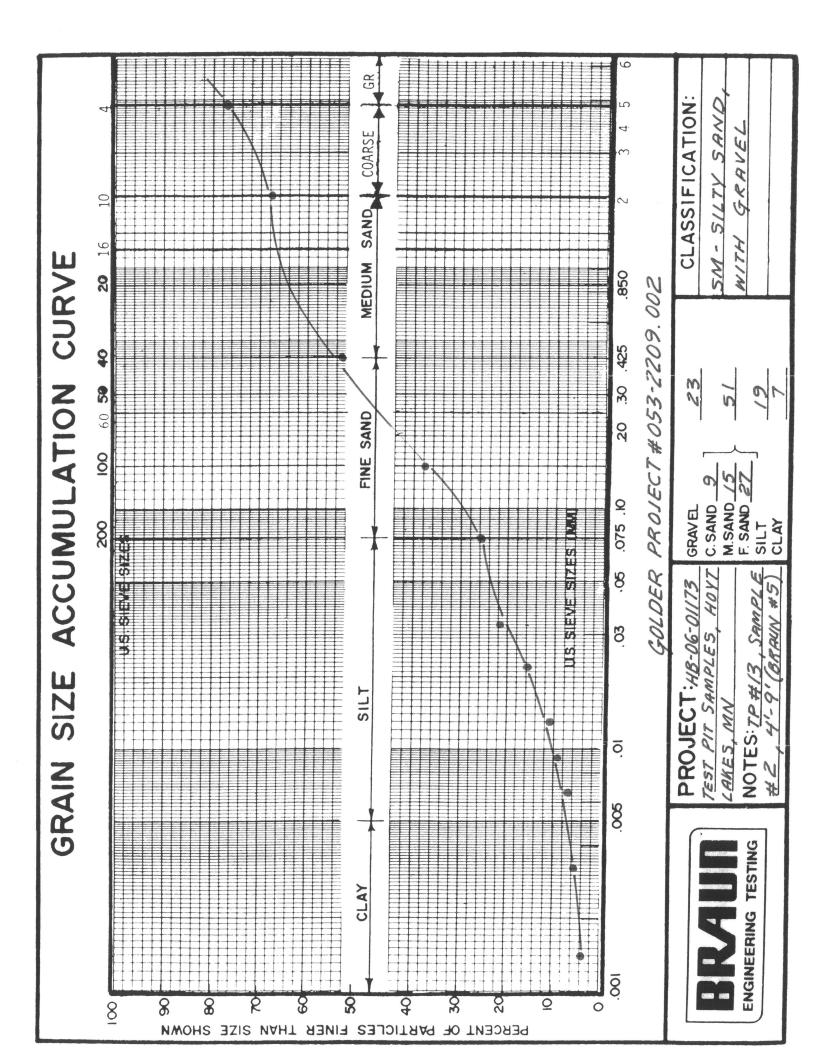
Classification:

SM-SILTY SAND, fine to medium grained, with GRAVEL,

brown

Sample Location:

TP #13, Sample #2, 4'-9'


Laboratory Results:

Sieve Size	% Passing
3/4"	100
3/8"	83
#4	77
#10	68
#20	60
#40	53
#100	38
#200	26.0

Remarks:

Natural moisture content = 8.0%

LL=10, PL=8, PI=2

BRAUN REVISED

Braun Intertec Corporation

3404 15th Ave East

Suite 2 Hibbing, MN 55746 Phone: 218.263.8869 Fax: 218.263.6700

Web: braunintertec.com

Sieve Analysis of Aggregate Sample **AASHTO T27 & T11**

Date:

August 28, 2006

Project No.: HB-06-01173

Client: Ms. Amy C. Smith, PE

Senior Engineer, Manager Duluth Operations

Golder Associates, Inc.

1346 West Arrowhead Road, Box #304

Duluth, MN 55811

Project Description: Test Pit Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002)

Field Data:

Braun Sample No.:

12

Date Sampled:

N/A

Date Received:

4-19-06

Date Tested:

4-28-06

Classification:

SM - SILTY SAND, fine grained, reddish brown

Sample Location:

TP #14, Sample #1, 0.5'-3.5'

Laboratory Results:

Sieve Size	% Passing
3/4"	100
3/8"	100
#4	100
#10	99
#20	97
#40	33
#100	67
#200	46.8

Remarks: Natural moisture content = 26.9%

Project Manager

BRAUN REVISED

Braun Intertec Corporation

3404 15th Ave East Suite 2

Hibbing, MN 55746

Phone: 218,263,8869 218.263.6700 Fax:

Web: braunintertec.com

Sieve Analysis of Aggregate Sample **AASHTO T27 & T11**

Date:

August 28, 2006

Project No.: HB-06-01173

Client: Ms. Amy C. Smith, PE

Senior Engineer, Manager Duluth Operations

Golder Associates, Inc.

1346 West Arrowhead Road, Box #304

Duluth, MN 55811

Project Description: Test Pit Samples, Hoyt Lakes, Minnesota (Golder Project # 053-2209.002)

Field Data:

Braun Sample No.:

Date Sampled:

N/A

Date Received:

4-19-06

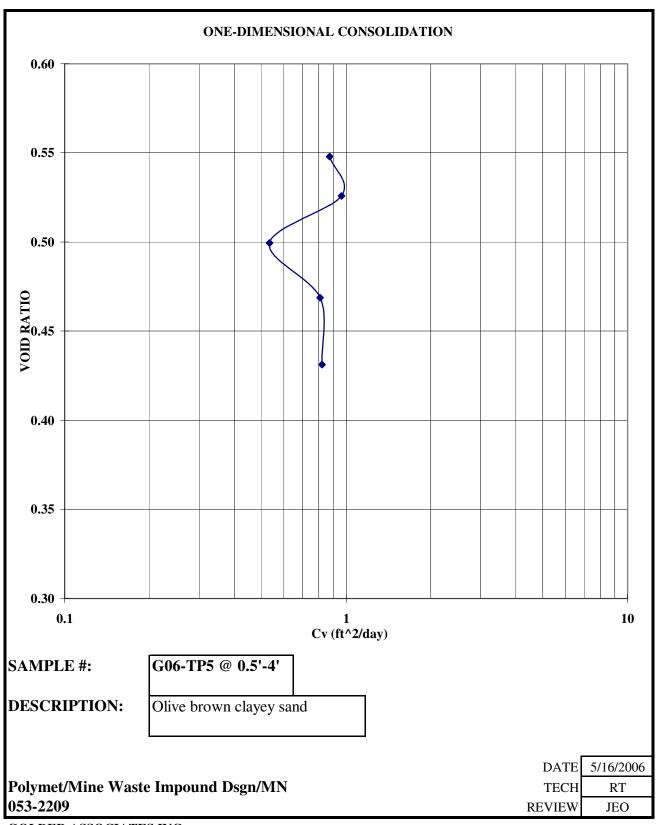
Date Tested:

4-27-06

Classification:

SM - SILTY SAND, fine to medium grained, with a little gravel

Sample Location:


TP #15, Sample #2, 4'-11.5'

Laboratory Results:

Sieve Size	% Passing
3/4"	100
3/8"	94
#4	88
#10	79
#20	70
#40	61
#100	48
#200	38.8

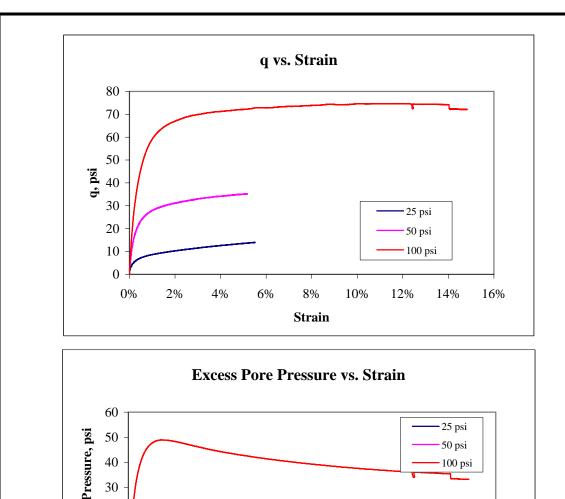
Remarks: Natural moisture content = 18.7%

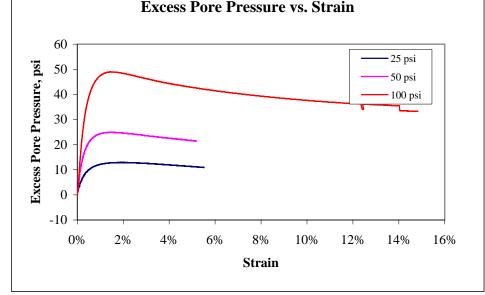
Project Manager

 $\label{eq:GOLDER} \textbf{GOLDER ASSOCIATES INC.}$

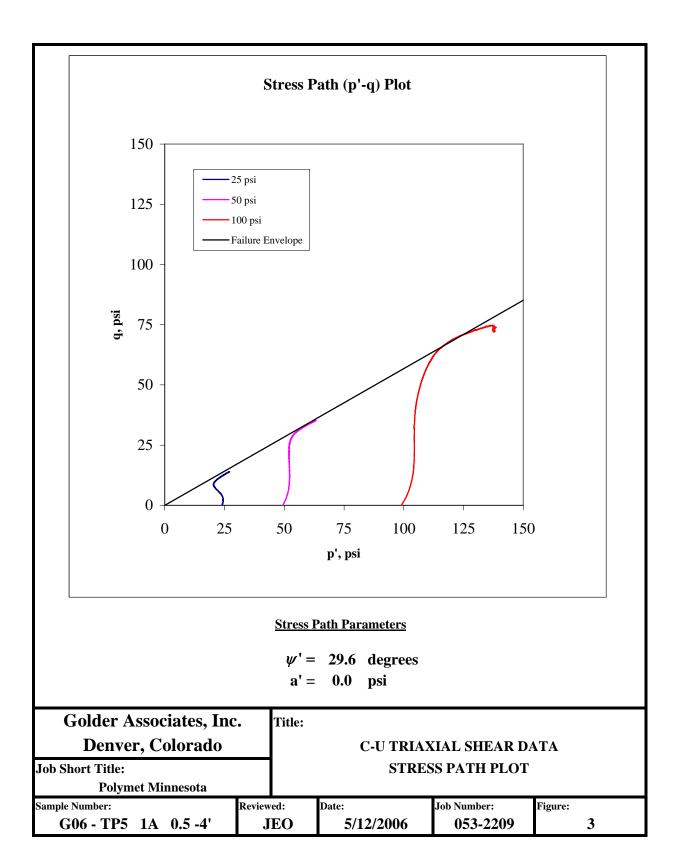
LAKEWOOD, COLORADO

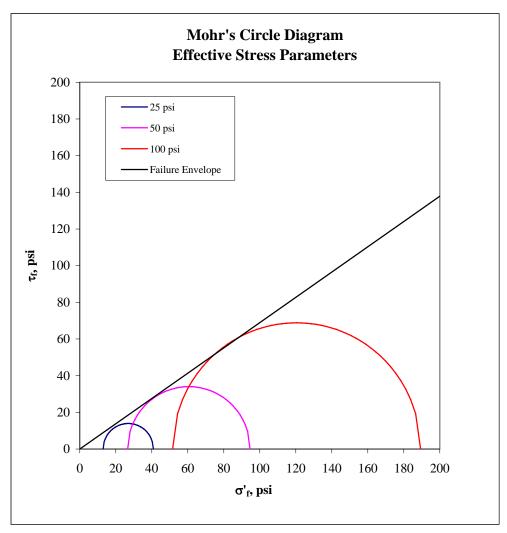
Sample # =	G06-TP5		Sample # =	G06-TP5		Sample # =	G06-TP5	
Point # =	1		Point # =	2		Point # =	3	
	Initial			Initial			Initial	
Length =	14.73	cm	Length =	14.73	cm	Length =	14.73	cm
Diameter =	7.22	cm	Diameter =	7.22	cm	Diameter =	7.22	cm
Wet Weight =	1293.70	g	Wet Weight =	1293.70	g	Wet Weight =	1293.70	g
Area =	40.9	cm ²	Area =	40.9	cm ²	Area =	40.9	cm ²
Sample Area =	6.35	in ²	Sample Area =	6.35	in ²	Sample Area =	6.35	in ²
Volume =	603.1	cm ³	Volume =	603.1	cm ³	Volume =	603.1	cm ³
Moisture Content =	17.3%	CIII	Moisture Content =	17.3%	CIII	Moisture Content =	17.3%	CIII
Specific Gravity =	-		Specific Gravity =	-		Specific Gravity =	-	
Ory Weight of Solids =	1102.90	g	Dry Weight of Solids =	1102.90	g	Dry Weight of Solids =	1102.90	g
Wet Unit Weight =	2.15	g/cm ³	Wet Unit Weight =	2.15	g/cm ³	Wet Unit Weight =	2.15	g/cm ³
Dry Unit Weight =	1.83	g/cm ³	Dry Unit Weight =	1.83	g/cm ³	Dry Unit Weight =	1.83	g/cm ³
Wet Unit Weight =	133.9	pcf	Wet Unit Weight =	133.9	pcf	Wet Unit Weight =	133.9	pcf
Dry Unit Weight =	114.1	pcf	Dry Unit Weight =	114.1	pcf	Dry Unit Weight =	114.1	pcf
Cell Pressure =	75	psi	Cell Pressure =	100	psi	Cell Pressure =	150	psi
Back Pressure =	50	psi	Back Pressure =	50	psi	Back Pressure =	50	psi
Confining Pressure =	25	psi	Confining Pressure =	50	psi	Confining Pressure =	100	psi


Notes: Sample visually described as: clay, olive brown, sandy to very sandy, part clayey sand, scattered small gravel and very dark gray claystone/shale fragments.


Specimen was undisturbed Shelby tube sample.

Failure defined as maximum principal stress ratio.


Strain rate was 0.05 mm/min. Test was a staged triaxial shear test.


Golder Associates, Inc.	Title:				
Denver, Colorado		TRIAXIAL SHEA	R TEST REPORT		
Job Short Title:	S	AMPLE DATA AN	D CALCULATION	S	
Polymet Minnesota					
		Reviewed:	Date:	Job Number:	Figure:
G06 - TP5 1A	0.5 -4'	JEO	5/12/2006	053-2209	1

Golder Associates, Inc. Title: Denver, Colorado C-U TRIAXIAL SHEAR DATA Job Short Title: q AND EXCESS PORE PRESSURE PLOTS **Polymet Minnesota** Sample Number: Date: Job Number: Reviewed: Figure: G06 - TP5 1A 0.5 -4' **JEO** 05/12/06 053-2209 2

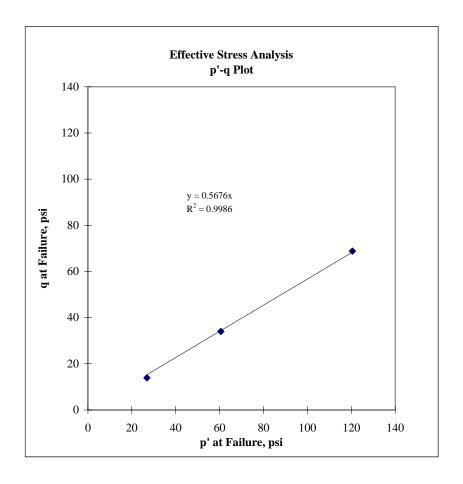
Effective Stress Shear Strength Parameters

 $\phi' = 34.6$ degrees c' = 0.0 psi

Golder Associates, Inc		Title:			
Denver, Colorado			C-U TRIA	XIAL SHEAR DA	ATA
Job Short Title:			MOHR'S	CIRCLE DIAGR	AM
Polymet Minnesota					
Sample Number:	Review	ed:	Date:	Job Number:	Figure:
G06 - TP5 1A 0.5 -4'	JI	EO	5/12/2006	053-2209	4

Consolidated-Undrained Triaxial Lab Data

From: GOLDER ASSOCIATES, INC.


Project: Polymet Minnesota

Project Number: 053-2209

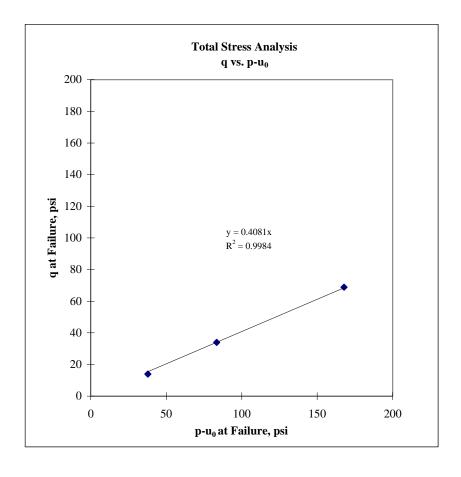
Sample Number	G06 - TP5	1A	0.5 -4'
Effective Stress Analysis			

Point Number	p'	q
	(psi)	(psi)
1	26.9	13.9
2	60.6	34.0
3	120.4	68.8

$$\begin{array}{cccc} tan(\psi') = & 0.5676 \\ a' = & 0.0 & psi \\ \\ \phi' = & 34.6 & degrees \\ c' = & 0.0 & psi \end{array}$$

Consolidated-Undrained Triaxial Lab Data

From: GOLDER ASSOCIATES, INC.


Project: Polymet Minnesota

Project Number: 053-2209

Sample Number	G06 - TP5 1A 0.5 -4'
Total Stress Analysis	

Point Number	p-u _o	q
	(psi)	(psi)
1	37.9	13.9
2	83.4	34.0
3	167.8	68.8

$$\begin{array}{cccc} tan(\psi) = & 0.41 \\ a = & 0.0 & psi \end{array}$$

$$\begin{array}{cccc} \phi = & 24.1 & degrees \\ c = & 0.0 & psi \end{array}$$

Consolidated-Undrained Triaxial Lab Data

From: GOLDER ASSOCIATES, INC.

Project: Polymet Minnesota

Project Number: 053-2209

Mohr-Coulomb Failure Criteria:

$$\tau_{\text{ff}} = c' + \sigma'_{\text{ff}} \tan(\phi')$$

 $\tau_{\text{ff}} = c + \sigma_{\text{ff}} \tan(\phi)$

Where:

c', c = effective and total stress cohesion intercepts

 ϕ' , ϕ = effective and total stress friction angles

 $\tau_{\rm ff}$ = shear strength on the failure surface at failure

 $\sigma_{\rm ff}$, $\sigma_{\rm ff}$ = effective and total normal stresses on the failure surface at failure

Stress Path Space:

$$q = \frac{\sigma_i - \sigma_s}{2}$$
 $p' = \frac{\sigma'_{i} + \sigma'_{s}}{2}$ $p = \frac{\sigma_i + \sigma_s}{2}$

Where:

q = maximum shear stress

p', p = mean effective and total stresses

 σ_1 , σ_1 = effective and total axial stresses

 σ_3 , σ_3 = effective and total confining stresses

Stress Path Failure Criteria:

$$q = a' + p' tan(\psi')$$

$$q = a + (p - u_0) tan(\psi)$$

Where:

a', a = intercepts of the q-axis in effective stress and total stress spaces

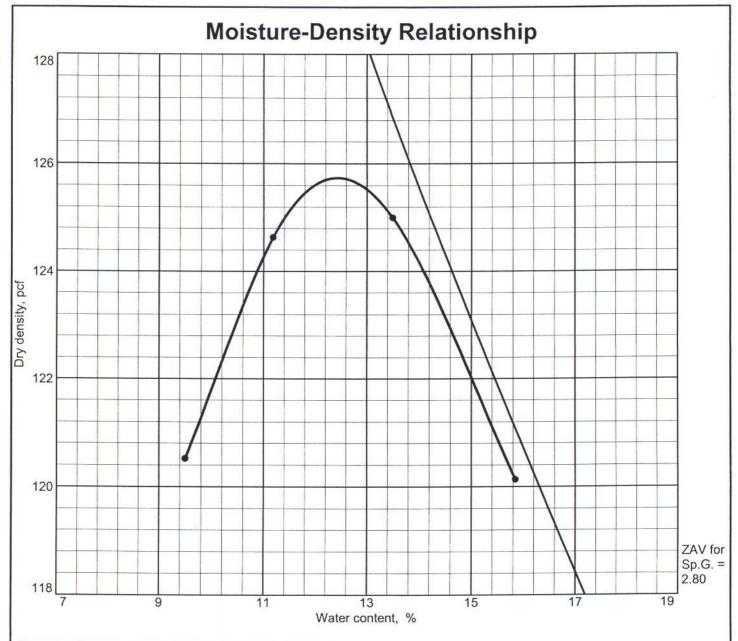
 ψ' , ψ = angles of the failure envelopes in effective stress and total stress spaces

q = maximum shear stress at failure

p' = mean effective stress at failure

 $p-u_0$ = mean total stress at failure minus the initial pore pressure

The relationships between ψ and ϕ and a and c are as follows:


$$tan(\psi) = sin(\phi)$$

 $a = c cos(\phi)$

The relationships between ψ' and ϕ' and a' and c' are as follows:

$$tan(\psi') = sin(\phi')$$

$$a' = c' cos(\phi')$$

Test specification: ASTM D 698-00a Method A Standard

Elev/	Classification		Nat.	0-0		DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	No.4	No.200
N.A.							10	

	TEST RESULTS	TEST RESULTS			
Maximum dry density = 125.7 pcf Optimum moisture = 12.4 %			SC-SM Silty clayey sand, brown		
Project No.: HB-06 Project: Polymet	-01173 Client: Golder and	Assoc.	Remarks: Test Pit #4, sample #1; 0.5-4.5'		
Source:	BRAUN INTERTEC	Elev./Depth: N.A.			

Permeability Test Data

Date:

August 11, 2006

Project:

HB-06-01173

Client:

Ms. Amy C. Thorson, PE, Senior Engineer

Manager Duluth Operations

Golder Associates, Inc.

1346 West Arrowhead Road

Box #304

Duluth, MN 55811

Project Description: Test Pit Samples, Hoyt

Lakes, Minnesota

(Golder Project #053-2209.002)

Sample Number:

3

Date Sampled:

N/A

Sample Location:

TP #4, Sample #1, 0.5-4.5'

Soil Classification:

SC-SM - Silty Clayey Sand, brown

Type of Test:

Falling Head (ASTM D 5084)

Standard Proctor: Max. Density (pcf):

125.7

Optimum Moisture (%):

12.4

Density of Sample (pcf):

119.4

Percent Compaction (%)

95

Specimen Height (cm):

3.99

Specimen Diameter (cm):

3.80

Max. Head Differential (ft):

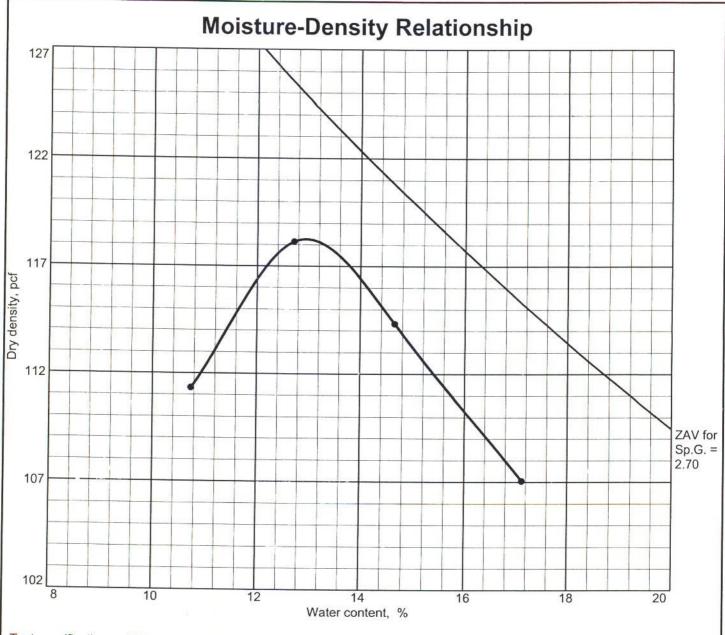
4.0

Confining Pressure (effective-psi):

2.0

Coefficient of Permeability:

 1.35×10^{-7}


K@ 20° C (cm/sec)

Notes:

Respectfully Submitted,

BRAUN INTERTEC CORPORATION

Project Manager

Test specification: ASTM D 698-00a Method A Standard

Elev/	Classifi	ication	Nat.	Nat.			<u> </u>	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	No.4	No.200	
N.A.									

	TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density	y = 118.3 pcf	SM- Silty sand, fine grained, brown
Optimum moisture =	12.9 %	
Project No.: HB-06-01	173 Client: Golder and Assoc.	Remarks:
Project: Polymet		Test Pit #7, sample#1, 0.5-3.5"
Source:	Sample No.: P-2 Elev./Depth: N.A.	
	BRAUN"	
	INTERTEC	

Permeability Test Data

Date:

August 11, 2006

Client:

Ms. Amy C. Thorson, PE, Senior Engineer

Manager Duluth Operations

Golder Associates, Inc.

1346 West Arrowhead Road

Box #304

Duluth, MN 55811

Project:

HB-06-01173

Project Description: Test Pit Samples, Hoyt

Lakes, Minnesota

(Golder Project #053-2209.002)

Sample Number:

2

Date Sampled:

N/A

Sample Location:

TP #7, Sample #1, 0.5-3.5'

Soil Classification:

SM - Silty Sand, brown

Type of Test:

Falling Head (ASTM D 5084)

Standard Proctor: Max. Density (pcf):

118.3

Optimum Moisture (%):

12.9

Density of Sample (pcf):

112.4

Percent Compaction (%)

95

Specimen Height (cm):

10.21

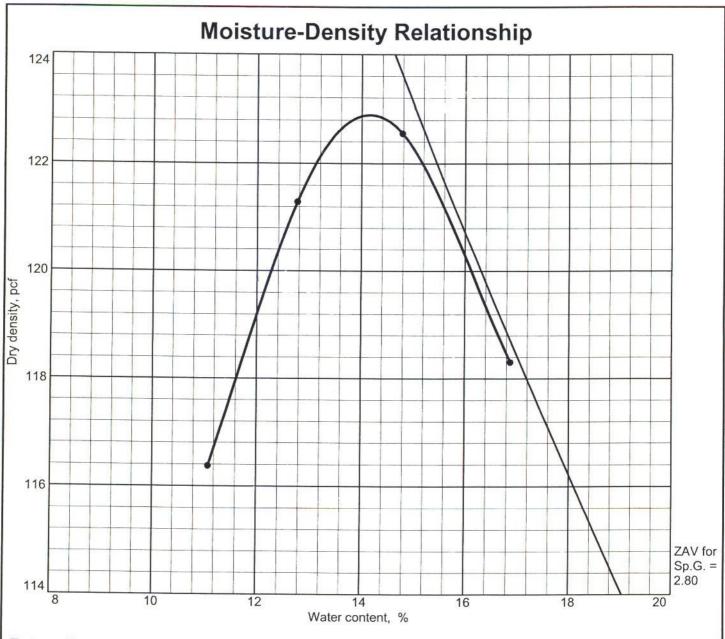
Specimen Diameter (cm):

9.65

Coefficient of Permeability:

 2.04×10^{-7}

K@ 20° C (cm/sec)


Notes:

Respectfully Submitted,

BRAUN INTERTEC CORPORATION

Gregory 1

Project Manager

Test specification: ASTM D 698-00a Method A Standard

Elev/	Classification		Nat.	Nat.				% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	PI	No.4	No.200	
N.A.				2.80					

	TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry den	sity = 122.9 pcf	SC- Clayey sand, brown
Optimum moisture	e = 14.2 %	
Project No.: HB-06	-01173 Client: Golder and Assoc.	Remarks:
Project: Polymet		TP-13, sample #2, 4-9'
Source:	Sample No.: P-1 Elev./Depth: N.A.	
	BRAUN"	
	INTERTEC	

BRAUN INTERTEC

Permeability Test Data

Date:

August 11, 2006

Project:

HB-06-01173

Client:

Ms. Amy C. Thorson, PE, Senior Engineer

Manager Duluth Operations

Golder Associates, Inc.

1346 West Arrowhead Road

Box #304

Duluth, MN 55811

Project Description: Test Pit Samples, Hoyt

Lakes, Minnesota

(Golder Project #053-2209.002)

Sample Number:

1

Date Sampled:

N/A

Sample Location:

TP #13, Sample #2, 4-9'

Soil Classification:

SC - Clayey Sand, brown

Type of Test:

Falling Head (ASTM D 5084)

Standard Proctor: Max. Density (pcf):

122.9

Optimum Moisture (%):

14.2

Density of Sample (pcf):

116.8

Percent Compaction (%)

95

Specimen Height (cm):

10.41

Specimen Diameter (cm):

9.65

Coefficient of Permeability:

K@ 20° C (cm/sec)

1.06x 10⁻⁷

Notes:

Respectfully Submitted,

BRAUN INTERTEC CORPORATION

Project Manager

APPENDIX C

SOIL CLASSIFICATION/LEGEND ASTM CLASSIFICATION/INDEX

Unified Soil Classification System

CRITERIA FOR ASSIGNI		SOIL CLASSIFICATION AND GENERALIZED GROUP DESCRIPTIONS		
	GRAVELS	CLEAN GRAVELS Less than 5% fines ^C	GW GP	Well-graded Gravels ^F
COARSE - GRAINED SOILS	More than 50% of coarse fraction retained on No. 4 Sieve	GRAVELS WITH FINES More than 12% fines ^C	GM GC	Gravel and Silt Mixtures ^{F, G, H} Gravel and Clay Mixtures ^{F, G, H}
More than 50% retained on No. 200 Sieve	SANDS 50% or more of coarse	CLEAN SANDS Less than 5% fines ^D	SW SP	Well-graded Sands Poorly-graded Sands
	fraction passes No. 4 Sieve	SANDS WITH FINES More than 12% fines ^D	SM SC	Sand and Silt Mixtures G, H, I Sand and Clay Mixtures
	SILT AND CLAYS	INORGANIC	CL ML	Low-plasticity Clays ^{K, L, M} Non/Low-Plasticity Silts ^{K, L, M}
FINE- GRAINED SOILS 50% or more passes	Liquid limit less than 50	ORGANIC	OL	Non/Low-Plasticity Organic Clays ^{K, L, M, N} , Non/Low-Plastic Organic Silts ^{K, L, M, N}
the No. 200 Sieve	SILTS AND CLAYS	INORGANIC	CH MH	High-plasticity Clays ^{K, L, M} High-plasticity Silts ^{K, L, M}
	Liquid limit greater than 50	ORGANIC	ОН	High-plast. Org. Clays ^{K, L, M, P} High-plast. Organic Silts ^{K, L, M, Q}
HIGHLY ORGANIC SOILS	Primarily organic matter, dark	in color, and organic odor	PT	Peat

See notes Figure A-1b

Relative Density or Consistency Utilizing Standard Penetration Test Values

Cohesionless Soils ^(a)			Cohesive Soils (b)				
Density ^(c)	N ₁ , blows/ft. ^(c)	Relative Density (%)	Consistency	N ₁ , blows/ft. ^(c)	Undrained ^(d) Shear Strength	Torvane tsf	
Very loose Loose Compact Dense Very Dense	0 to 4 4 to 10 10 to 30 30 to 50 over 50	0 -15 15 - 35 35 - 65 65 - 85 >85	Very soft soft firm stiff Very Stiff Hard	0 to 2 2 to 4 4 to 8 8 to 15 15 to 30 over 30	<250 250 - 500 500 - 1000 1000 - 2000 2000 - 4000 >4000	<0.1 0.1 - 0.3 0.3 - 0.5 0.5 - 1.0 1.0 - 2.0 >2.0	

- (a) Soils consisting of gravel, sand, and silt, either separately or in combination possessing no characteristics of plasticity, and exhibiting drained behavior.
- (b) Soils possessing the characteristics of plasticity, and exhibiting undrained behavior.
- (c) Refer to text of ASTM D 1586-84 for a definition of N; in normally consolidated cohesionless soils Relative Density terms are based on N values corrected for overburden pressures (N_I). N values may be affected by a number of factors including material size, depth, drilling method, and bore-hole disturbance. N values are only an approximate guide to the consistency of cohesive soils.

Descriptive Terminology Denoting Component Proportions

Descriptive Terms

Trace Few

Little

Some

Range of

Proportion

0 - 5% 5 - 10%

15 - 20% 30 - 45%

(d) Undrained shear strength = 1/2 unconfined compression strength.

Samples

SS	SPT Sampler (2 in. O.D.)
sso	Oversize SPT (2.5 in. O.D.)
HD	Heavy Duty Spoon (3.0 in. O.D.)
SH	Shelby Tube
Р	Pitcher Sampler
В	Bulk
С	Cored
RC	Air Rotary Cuttings
AC	Auger Core
CUT	Auger Cuttings
	1 1 1 11 140 11

- SS drive samples advanced with 140 lb. hammer with a 30 in. drop.
- 2. HD drive samples are advanced with 300 lb. hammer with a 30 in. drop.
- 3. SSO drive samples advanced with 140 lb. manner with a 30 in. drop.

Laboratory Tests

Test	Designation
Moisture	(1)
Density	D
Grain Size	G
Hydrometer	Н
Atterberg Limits	(1)
Consolidation	С
Unconfined	U
UU Triax	UU
CU Triax	CU
CD Triax	CD
Permeability	Р

(1) Moisture and Atterberg Limits plotted on boring log.

Criteria for Describing Moisture Condition

Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, usually soil is below water table

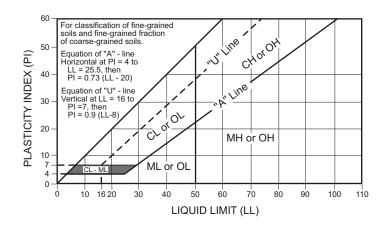
Silt and Clay Descriptions

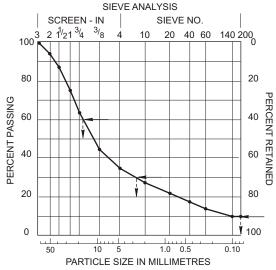
Description	Typical Unified Designation
Silt	ML (non-plastic)
Clayey Silt	CL-ML (low-plasticity)
Silty Clay	CL
Clay	СН
Plastic Silt	МН
Organic Soils	OL, OH, PT

Component Size Range

Component	Size Range
Boulders	Above 12 in.
Cobbles	3 in. to 12 in.
Gravel Coarse gravel Fine gravel	3 in. to No. 4 (4.76mm) 3 in. to 3/4 in. 3/4 in. to No. 4 (4.76mm)
Sand Coarse sand Medium sand Fine sand	No. 4 (4.76mm) to No. 200 (0.074mm) No. 4 (4.76mm) to No. 10 (2.0mm) No. 10 (2.0mm to No. 40 (0.42mm) No. 40 (0.42mm) to No. 200 (0.074mm)
Silt and Clay	Smaller than No. 200 (0.074mm)

Component Definitions by Gradation


				SOI	L CLASSIFICATION
CRITERIA FO	OR ASSIGNING GROUP SYM	BOLS AND GROUP NAM	ES USING LABOR ATORY TESTS	Group Symbol	Group Name
		Clean Gravels C	Cu≥4 and 1≤ Cc≤3 ^E	GW	Well-graded gravel F
	Gravels More than 50% of coarse	Less than 5% fines	Cu <4 and/or 1> Cc>3 E	GP	Poorly graded gravel F
	fraction retained on No. 4 sieve	Gravels with Fines	Fines classify as ML or MH	GM	Silty gravel F, G, H
COARSE-GRAINED SOILS		Gravels with Fines C More than 12% fines	Fines classify as Cl or Ch	GC	Clayey gravel F, G, H
More than 50% retained on No. 200 sieve		Clean Sands D	Cu≥6 and 1≤Cc≤3 ^E	SW	Well-graded sand [/]
	Sands 50% or more of coarse	Less than 5% fines	Cu < 6 and/or 1 > Cc > 3 E	SP	Poorly graded sand [/]
	fraction passes No. 4 sieve	Sands with Fines D	Fines classify as ML or Mh	SM	Silty sand ^{G, H, I}
		More than 12% fines	Fines classify as Cl or Ch	SC	Clayey sand ^{G, H, I}
		Inorgania	PI > 7 and plots on or above "A" line $^{\it J}$	CL	Lean clay ^{K, L, M}
	Silts and Clays Liquid limit less than 50	Inorganic	PI < 4 or plots below "A" line ^J	ML	Silt K, L, M
FINE-GRAINED SOILS 50% or more passes the		Organic	Liquid limit - oven dried Liquid limit - not dried <0.75	OL	Organic clay K, L, M, N Organic silt K, L, M, O
No. 200 sieve		Ingraphic	PI plots on or above "A" line	СН	Fat clay ^{K, L, M}
	Silts and Clays	Inorganic	PI plots below "A" line	МН	Elastic silt K, L, M
	Liquid limit 50 or more	Organic	Liquid limit - oven dried Liquid limit - not dried <0.75	ОН	Organic clay K, L, M, P Organic silt K, L, M, Q
HIGHLY ORGANIC SOILS		Primarily organic matter	dark in color, and organic odor		Peat


- A Based on the material passing the 3-in. (75-mm) sieve.
- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- C Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt GW-GC well-graded gravel with clay GP-GM poorly graded gravel with silt GP-GC poorly graded gravel with clay
- D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt SW-SC well-graded sand with clay SP-SM poorly graded sand with silt SP-SC poorly graded sand with clay

$$E_{Cu} = D_{60}/D_{10}$$
 $Cu = \frac{(D_{30})^2}{D_{10} \times D_{60}}$

- F If soil contains ≥15% sand, add "with sand" to group name.
- $^{\hbox{\scriptsize G}}$ If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.
- H If fines are organic add "with organic fines" to group name.
- I If soil contains $\geq\!\!15\%$ gravel, add "with gravel" to group name.
- J If Atterberg limits plot in hatched area, soil is a CL-ML, silty clay.
- K If soil contains ≥15 to 29% plus No. 200, add "with sand" or "with gravel", whichever is predominant.

- L If soil contains ≥30% plus No. 200, predominantly sand, add "sandy" to group name.
- $^{\mbox{M}}$ If soil contains $\geq\!30\%$ plus No. 200, predominantly gravel, add "gravelly" to group name.
- N PI \geq 4 and plots on or above "A" line.
- O PI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- Q PI plots below "A" line.

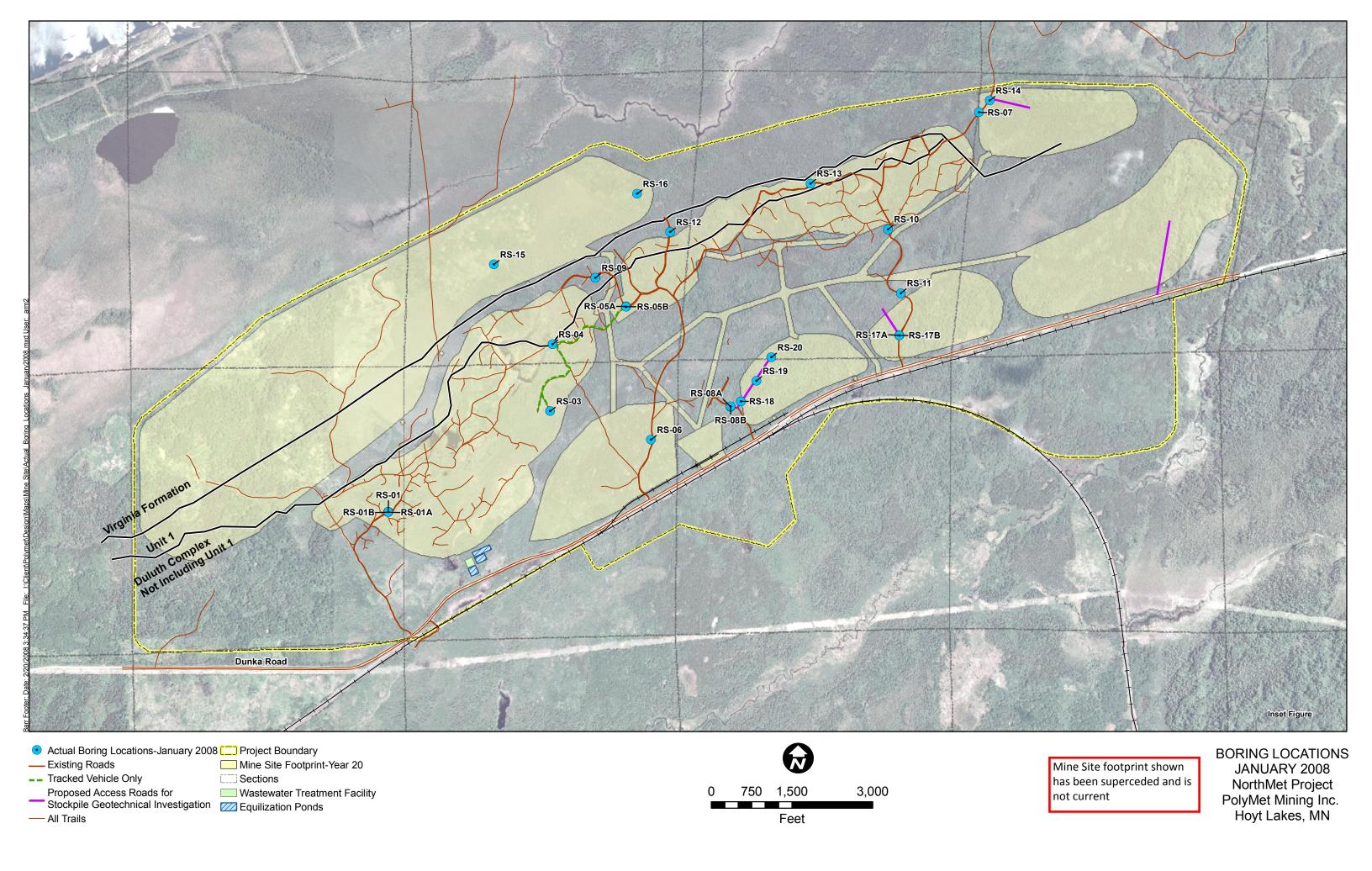

$$Cu = \frac{D_{60}}{D_{10}} = \frac{15}{0.075} = 200 \qquad Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}} = \frac{(2.5)^2}{0.075 \times 15} = 5.6$$

Figure C-2
ASTM D2487-93
ASTM CLASSIFICATION INDEX

Attachment D

Rotasonic Drilling Investigation – Boring Logs and Classification Testing

Client PolyMet Mining Corporation	Drill Contrac	ctor Boart I	LOG OF Boring RS	-01B					
Project Name Polymet Overburden Characterization	Drill Method	Drill Method Rotasonic SHEET 1 O							
Number _23/69-B75 INV	Drilling Start	Drilling Started _1/15/08							
Location NorthMet Mine Site	Logged By _	MMB/REE	Total Depth _20.5						
SAMP. LENGTH & RECOVERY Matrix Soil pH-ORP-Specific Cond. %GR/SA/FINES Moisture	Matrix Color ASTM	LITHOLOGY Stratigraphic Unit	DESCRIPTION	ELEV. FEET					
7.05	R 2/1 ack PT	Peat	Fibrous Peat; 90-100% organic matter, mostly woody material. Up to 10% mineral soil.						
2			Silty sand with gravel, homogeneous, very fine- to fine-grained, angular to subrounded, fine to coarse gravel. Sand fraction is 80% quartz, 15% lithics, and 5% feldspars. Cobbles are 80% granitic rock, 15% black fine-grained metasediment (Virginia Formation?), and 5% other (foliated gneiss).	- 1612 - -					
- None 5.89 24/47/29 Dry to Day Hollow Brow	ark owish SM			- 1610 - - -					
6 —	ery : ark : ayish :	Upper Till	Sand with silt and gravel, homogeneous, medium dense, fine- to medium-grained, gravel is fine- to coarse-grained, angular to subrounded. Cobbles are 70% granitoids, 20% black fine-grained metasediment, and trace schist. Rust-colored coatings along fractures and cobble interfaces, dark red brown (7.5YR 3/4). Less than 2% dendritic or irregular mottles, fine to medium size - dark reddish brown (5YR 3/4).	- 1608 - - - - 1606					
8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -	SP-SM:		9-10': 10% dark red (2.5YR 3/6) mottles associated with tiny fractures within matrix. (continued)	_ 1604 _					

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odor, and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0-1', 1-5', 6-7', 14-15', 18-20', 20-20.5'; Geotechnical samples: 0-1', 1-5', 5-10', 10-15', 12.5-15', 15-17.5', 18-20', 20-20.5'

Client	PolyN	1et Minir	ng Corpor	ation		Drill	Contra	actor	Boart	Longyear	LOG OF Boring R	S-01B
Project	Name	Polym	net Overb	urden Ch	naracteriz	ation Drill	Metho	od R	otasoni	С	DRAFT SHEE	T 2 OF 3
Numbe	23/	69-B75	INV			Drill	ing Sta	arted _	1/15/0	8 Ended _1/15/08	Elevation 1613.0	
Locatio	n <u>No</u>	rthMet N	/line Site			Log	Logged By MMB/REE Total Depth 20.5					
DEPTH FEET	SAMP. LENGTH & RECOVERY	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPT	ION	ELEV. FEET
- - 12 -		None		15/65/20 (Visual)	Very Moist	2.5Y 4/3				metasediment, and trace schist fractures and cobble interfaces,	to coarse-grained, angular to granitoids, 20% black fine-grained	- - 1602 -
- - 14 - -	%08 		6.37 223.7 16		Wet	Olive Brown						— 1600 - -
- 16 - -	-			25/60/15 (Visual)			SM		Upper Till	Abundant dark red (2.5YR 3/6) yellow (10YR 6/6) weathering o fine-grained metasediment clas	staining on coarse clasts. Brownish r precipitate along fractures of black, ts.	- 1598 - -
- 18- - -	%08 	None	7.28 65.6 34									- 1596 - - - 1594
										(continued)		

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435
Telephone: 952-832-2600
Fax: 952-862-2601

Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odor, and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0-1', 1-5', 6-7', 14-15', 18-20', 20-20.5'; Geotechnical samples: 0-1', 1-5', 5-10', 10-15', 12.5-15', 15-17.5', 18-20', 20-20.5'

Client Poly	Met Minir	ng Corpoi	ration		Dril	Contra	actor	Boart	Longyear	LOG OF Boring RS		
Project Name	e Polym	net Overb	urden Cl	naracteriz	ation Dril	DRAFT SHEET						
Number 23	/69-B75	INV			Dril	Orilling Started 1/15/08						
Location No		/line Site			Log	ged By	MM	B/REE		Total Depth 20.5		
SAMP LENGTH	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPT	TION	ELEV. FEET	
22-		8.79 -40.0 66	10/50/40 (Visual)	Moist	Gley1 3/10Y Very Dark Greenish Gray	SM		Lower Till	Gravel is fine- to coarse-graine are black, fine-grained metased	se, very fine- to fine-grained sand. d, angular to subrounded. Cobbles diment and granitoid. Olive brown brehole, irregular contact with above.	1592 	
-											_ — 1590 _	
24											- - 1588 -	
26 -											_ 1586 _	
-											- 1584 -	
	■ Bar	r Engir	eerina	Co.			Rei	marks:	Soil matrix and clasts were exan	nined for visible sulfides, HCl reaction,	odor,	

Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0-1', 1-5', 6-7', 14-15', 18-20', 20-20.5'; Geotechnical samples: 0-1', 1-5', 5-10', 10-15', 12.5-15', 15-17.5', 18-20', 20-20.5'

Client PolyMe	et Mining Corpora	ation	Drill	Contra	ictor	Boart	Longyear	LOG OF Boring F	RS-03 T 1 OF 3
		urden Characteri		l Method				RAFT SHEE	
Number 23/6				ling Star				ation <u>1595.5</u>	
	thMet Mine Site		Log	ged By	REI	E/JAM2	Total	Depth <u>22.0</u>	
SAMP. LENGTH	Matrix Effervescence Soil pH- ORP- Specific Cond.	%GR/SA/ FINES Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPTION		ELEV. FEET
2 + %08	5.17 65 116	Very Moist	2.5YR 2.5/1 Reddish Black	PT		Peat	Fibrous peat; wood and other organic materials and amorphous peat, compose with trace leaf and woody organic materials.	d of primarily muddy material	- 1594 - 1592 - 1590 - 1588 - 1588
				\sqsubseteq			(continued)	visible sulfides. LIOI receptions	
BARR	Edina, MN	7th St. Suite 2 55435 e: 952-832-26					Soil matrix and clasts were examined for and odor after HCI. No sulfides, reaction observed, unless otherwise noted. Geoch 5-20', 20-22'; Geotechnical samples: 5-20', 20-20',	with HCl, or unusual odors we chemical samples: 0-5', 5-10', -10', 10-15', 15-20', 16', 19', 2	vere 10-15',

Additional data may have been collected in the field which is not included on this log.

POLYMET LOG OF BORING 2008 2369B75.GPJ BARR JAN06.GDT 4/22/08

Norther 23/69-875 INV	_			g Corpor								RS-03 2 OF 3
Logard by REDIAM2 Total Depth 22.0 DEPTH 15.86 at 12.3355					urden Cr	naracteriza						
DEPTH SULVE AND AND AND STATE OF STATE											Licvation 1000.0	
Sandy sit with a little gravel, loose, homogeneous, grave is fine-grained, gravel and sand, cobbles are black, fine-grained metasediment and troctoile. 12-15: No organic matter, increased gravel and sand, cobbles as above. 14-15: No organic matter, increased gravel and sand, cobbles as above. 15-45: No organic matter, increased gravel and sand, cobbles as above. 16-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic mat							Log	gea By	KE	E/JAIVI2	Total Depth 22.0	
Sandy sit with a little gravel, loose, homogeneous, grave is fine-grained, gravel and sand, cobbles are black, fine-grained metasediment and troctoile. 12-15: No organic matter, increased gravel and sand, cobbles as above. 14-15: No organic matter, increased gravel and sand, cobbles as above. 15-45: No organic matter, increased gravel and sand, cobbles as above. 16-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic matter, increased gravel and sand, cobbles as above. 18-15: No organic mat	DEPTH FEET	MMP. LENGTH RECOVERY	Matrix ffervescence	Soil pH- ORP- pecific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	.ITHOLOGY	Stratigraphic Unit	DESCRIPTION	
, , , , , , , , , , , , , , , , (CONUNICE)	12 - - - 14 - - -	%09		5.46 3 36 7.4 -208.7 50	12/33/55 (Lab)	Wet	Gley1 5/10Y Greenish	ML		Upper	matter from 10-12'. Sand is fine- to medium-grained, gravel is fine-grained, subangular to subrounded. Cobbles are black, fine-grained metasediment and troctolite. 12-15': No organic matter, increased gravel and sand, cobbles as above. Silty sand with gravel, homogeneous, loose, fine-grained, gravel is fine- to coarse-grained, subangular to subrounded. Cobbles are as above, also some magnetic cherty iron formation, and one	- - 1584 - - 1582 - - 1580 - - 1578

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odor, and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0-5', 5-10', 10-15', 15-20', 20-22'; Geotechnical samples: 5-10', 10-15', 15-20', 16', 19', 20-22'

Client PolyN	/let Minir	ng Corpor	ration		Drill	Contra	actor	Boart	LOG OF Boring	RS-03 EET 3 OF 3
Project Name	Polym	net Overb	urden Cl	naracteriz	ation Drill	Metho	d R	otasoni		EIJOFJ
Number 23/	69-B75	INV			Drill	ing Sta	rted .	1/16/0	8 Ended <u>1/16/08</u> Elevation 1595.5	
Location No	orthMet N	Mine Site			Log	ged By	RE	E/JAM2		
STH RY	e e	nd.			or		>	ji.		
DEPTH S	atrix	1.PH-	%GR/SA/ FINES	Moisture	SO ×	ASTM	700	graph	DESCRIPTION	ELEV.
SAMP LENGTH	Matrix Effervescence	Soil pH- ORP- Specific Cond.	5 	Moi	Matrix Color	AS	LITHOLOGY	Stratigraphic Unit		FEET
									Gravelly silt, homogenous, gravel is fine- to coarse-grained, subangular to subrounded. Cobbles are magnetic cherty iron	
-					0, 4				formation, granitoid.	-
100%		-200	40/10/50 (Visual)	Moist	Gley1 2.5/10Y Greenish	ML		Lower Till		-
		63	(*.544.)		Black					
										 1574
22									Bedrock at 22.0', troctolite.	
									End of Boring - 22 feet	
-										
-										— 1572
24 —										
24										
-										-
_										-
										1570
										 1570
26—										-
_										_
-										- 1568
28-										
+										-
-										-
										— 1566
										1500
										-

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odor, and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0-5', 5-10', 10-15', 15-20', 20-22'; Geotechnical samples: 5-10', 10-15', 15-20', 16', 19', 20-22'

Client PolyMet Mini	ng Corpor	ration		Drill	Contra	ctor	Boart	Longyear	LOG OF Boring F	RS-04
Project Name Polyr			naracteriz				otasoni		DRAFT SHEET	1 OF 3
Number _23/69-B75	INV			Drill	ing Sta	rted _	1/16/0	8 Ended 1/18/08	Elevation 1600.0	
Location NorthMet				Log	ged By	REI	E/JAM2	!	Total Depth _26.0	
SAMP. LENGTH & RECOVERY Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIP	,	ELEV. FEET
-		95% organics	Wet	10YR 2/2 Very Dark Brown	PT		Peat	Fibrous peat, composed prima fine-grained organic material.	arily of woody material with some	_
2	5.71 124.3 22	30/30/40 (Visual)	Wet	2.5Y 3/3 Dark Olive Brown	SM		Soil	Silty sand with gravel, homoge sand is fine- to coarse-grained Matrix has dark reddish brown	eneous, up to 10% organic material, d, gravel is subangular to subrounded. n (2.5YR 3/4) mottles.	- - - - - - - - -
6— - - - - - - - - - None	5.91 82 19	30/50/20 (Visual)	Wet	10YR 4/3 Brown	SM		Upper Till	Gravel is fine- to coarse-graine	eneous, fine- to coarse-grained. ed. Cobbles are fine-grained black ty iron formation, and granitoid.	- - 1594 - - - 1592 -

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odor, and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0-1', 1-5', 5-10', 10-15', 15-20', 20-25', 25-26'; Geotechnical samples: 1-5', 5-10', 10-15', 15-20', 20-25'

Project Name Polymet Operation Characterization Drill Method Rollsanors Project Name Polymet Operation Polymetric Characterization Polymetric Chara	Client PolyMet Mining Corporation	Drill Contracto	or Boart L	LOG OF Boring	RS-04 T 2 OF 3
Logged By REEJIAM2 Total Depth 25.0 DEPTH 1	Project Name Polymet Overburden Characterization	Drill Method _	Rotasonio		., 2 0, 0
DEPTH 19 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Number <u>23/69-B75 INV</u>	Drilling Starte	ed _1/16/08	B Ended _1/18/08 Elevation _1600.0	
13-15: Gradational change in color and texture to 15-20' interval. 14- None 6.74 9.0 None 6.74 9.0 None 6.74 9.0 18-69/23 None 19-20' Matrix contains possible sulfide flakes or secondary mineralization. 20: Several trodolite cobbles with sulfide minerals. (continued)	Location NorthMet Mine Site	Logged By _F	REE/JAM2	Total Depth _26.0	
SIM Silly sand with gravel, homogeneous, same as the 5-10' interval. 13-15': Gradational change in color and texture to 15-20' interval. 14-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and texture to 15-20' interval. 15-15': Gradational change in color and text	Samp. LENGTH & RECOVERY Matrix Soil ph- ORP- Specific Cond. %GR/SA/ FINES Matrix Color	ASTM	Stratigraphic Unit		
(continued)	12— None 6.33 19/60/21 (Lab) None 6.33 104.5 25 14— None 6.74 -90 25 None 6.85 18/59/23 Wet 10YR Very I Graduation of the second of	SM ional ing SM	Upper Till	13-15': Gradational change in color and texture to 15-20' interval. Silty sand with gravel, homogeneous, fine- to coarse-grained. Gravel is fine- to coarse-grained, subangular to subrounded. Cobbles as above.	- - - - - - - - - - - - -
				20': Several troctolite cobbles with sulfide minerals.	
Pemarks: Soil matrix and clasts were examined for visible sulfides. HCl reaction odor					

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0-1', 1-5', 5-10', 10-15', 15-20', 20-25', 25-26'; Geotechnical samples: 1-5', 5-10', 10-15', 15-20', 20-25'

			ng Corpor net Overb		naracteriz				Boart otasoni	Longyear	LOG OF Boring DRAFT	RS-04 ET 3 OF 3
Number	23/6	69-B75	INV_			 Drill	ling Sta	rted .	1/16/0	8 Ended 1/18/08	Elevation 1600.0	
Location	No	rthMet N	/line Site			Log	ged By	RE	E/JAM2	2	Total Depth 26.0	
DEPTH FEET	SAMP. LENGTH & RECOVERY	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPT	ΠΟΝ	ELEV. FEET
22-	100% 60%	None	7.83 -87.6 17	30/50/20 (Visual)	Dry	10YR 3/1 Very Dark Gray Gley1 2.5/N Black to Gley1 6/1 Greenish Gray	SM GP-GM		Lower Till	has possible secondary sulfide sulfide-bearing troctolite, fine-g cherty iron formation, and grand Gravel with silt and sand, fine-above. Bedrock at 25'. Sulfide-bearing End of Boring - 26 feet	d, subangular to subrounded. Matrix mineralization. Cobbles are rained black metasediment, magnetic itoid. to coarse-grained. Cobbles are as	- 1578 1578 1576 1574 1572 1572

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0-1', 1-5', 5-10', 10-15', 15-20', 20-25', 25-26'; Geotechnical samples: 1-5', 5-10', 10-15', 15-20', 20-25'

Client PolyN	∕let Minin	ng Corpor	ration		Drill	Contra	actor	Boart	Longyear	LOG OF Boring RS	6-05A
Project Name		_		naracteriz				otasoni		DRAFT SHEET	Γ 1 OF 2
Number 23/	69-B75	INV			Drill	ing Sta	rted .	1/18/0	8 Ended 1/18/08	Elevation 1605.0	
Location No	rthMet N	/line Site			Log	ged By	RE	E		Total Depth 13.0	
SAMP LENGTH	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPTION	ON	ELEV. FEET
2 %02	None	6.42 124.5 30		Moist	7.5YR 3/3 Dark Brown	SM			Low recovery on RS-05A for 0-5	i'. See R5-05B log for description.	- - 1604 - - - 1602
4	None	6.55 88.7 22	20/60/20 (Visual)	Moist	10YR 3/4 Dark Yellow Brown	SM		Upper Till	Silty sand with gravel, homogene Gravel is fine- to medium- graine 1% organic matter. Cobbles are fine-grained metasediment, 5% greenstone. Rust-colored staining	ed, subangular to subrounded. Up to 60% granitoid, 30% black cherty iron formation, and trace	- - - - - - - - 1598
8-	None	6.49 166.6 19	40/40/20 (Visual)	Moist	Dark Gray Brown	SM			are same lithologies as above.	al color change with above. Cobbles omogenized 6-11.5' interval. Grain rel, 46% sand, and 26% silt.	- - 1596 -
			ooring				Rai	marke.	Soil matrix and clasts were exami	ned for visible sulfides. HCl reaction.	odor

BARR

POLYMET LOG OF BORING 2008 2369B75.GPJ BARR JAN06.GDT 4/22/08

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 5-10', 10-13'; Geotechnical samples: 0-1', 5-6', 6-11.5', 10-11.5', 11.5-13'

Client PolyM	let Minin	a Corpo	ration		Dril	l Contra	actor	Boart	Longyear	LOG OF Boring R	S-05A		
Project Name				naracteriz		- DDAET SHI							
Number 23/6								1/18/0		Elevation 1605.0			
Location Nor	rthMet N	line Site			Log	ged By	RE	E		Total Depth 13.0			
SAMP. LENGTH	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIP	TION	ELEV. FEET		
-			64/23/13 (Lab)		2.5Y 4/2 Dark Gray Brown	GM		Upper	Silty gravel with sand, fine- to of subrounded. Cobbles are 60% magnetic cherty iron formation black fine-grained metasedime	6 troctolite, 30% granitoid, 5% with rust-colored staining, and 5%	- 1594		
12- - - - -	None	8.9 -70 88	70/20/10 (Visual) 61/24/15 (Lab)	Wet	2.5Y 5/1 Gray	GM		Till	As above, increased clay conte	ent, gray.			
- 14 <i>-</i> -									End of Boring - 13 feet		-		
16-											— 1590 - -		
- 18-											— 1588 -		
											_ 1586 		

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odor, and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 5-10', 10-13'; Geotechnical samples: 0-1', 5-6', 6-11.5', 10-11.5', 11.5-13'

Client PolyMet Mining Corporation Drill Contractor Boart Longyear LOG OF Boring RS-05B												
Project Name	Polym	net Overb	ourden Ch	naracteriz	ation Drill	Metho	d R	otasoni		LITOFI		
Number 23/	69-B75	INV			Drill	ing Sta	arted	1/18/0	8 Ended 1/18/08 Elevation 1605.0			
Location No	rthMet N	,			Log	ged By	REI		Total Depth 5.0			
HT430	rix scence	pH- P- Cond.	/SA/ ES	ture	Color	Σ	LOGY	raphic it		ELEV.		
SAMP. LENGTH	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPTION	FEET		
	None	6.13 179.0	30/50/20 (Visual)		10YR 4/4 Dark Yellowish Brown				Silty sand with gravel, homogeneous, fine- to coarse-grained. Gravel is fine- to coarse-grained, angular to subrounded. Cobbles are 50% granitoid, 30% fine-grained, black metasediment, 20% magnetic cherty iron formation, and trace greenstone or silica rocks (possible Archean).	- 1604 -		
1 1 1 100%	None	6.54 187.0	30/50/20 (Visual)	Moist	10YR 4/2 Dark Grayish	SM		Upper Till	3.5-4': Lens of dark grayish brown silty sand with gravel.	- 1602 		
4-	None	6.25 193.0 25			Brown SA 1-3.5'				End of Boring - 5 feet	1600		
6-										-		
-										— 1598 –		
8+ +										- 1596 -		

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601 Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odor, and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 1-5'; Geotechnical samples: 1-3.5', 3.5', 3.5-4'

Client PolyN	/let Minin	ıg Corpor	ration		Drill	Contra	actor	Boart	LOG OF Boring RS LOG OF BORING RS	1.06A
Project Name	Polym	et Overb	urden Ch	aracteriz	ation Drill	Metho	d R	otasoni		
Number 23/	69-B75	INV			Drill	ing Sta	arted .	1/26/0	8 Ended <u>1/26/08</u> Elevation <u>1611.0</u>	
Location No	orthMet N	line Site			Log	ged By	_MN	IB/MJD	/REE Total Depth 21.0	
SAMP LENGTH	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPTION	ELEV. FEET
-	None	4.45 290.3 6	10/50/40 (Visual)		10YR 4/4 Dark Yellowish Brown	SM		Soil	Silty sand, up to 20% organic matter, homogeneous, sand is fine- to coarse-grained, gravel is fine- to coarse- grained, subrounded to subangular. Matrix is magnetic. Sand fraction is 70% quartz, 10% feldspar, and 20% white fragments. Cobbles are 75% black fine-grained metasediment, 20% magnetic iron formation, and 5% granitoid.	- 1610
2+	None	4.84 313.0	5/65/30 (Visual)	Moist	7.5YR 3/2 Dark Brown	SM			Silty sand, up to 30-40% organic matter, homogeneous, sand is fine-to coarse-grained. Matrix has dark-brown to black organic masses and lenses. Sand fraction is 40% quartz, 50% feldspar, and 10% lithic fragments. Cobbles are 90% granitoid, 5% fine-grained black metasediment, and 5% magnetic iron formation.	-
- 0001	None	4.99 279 11	20/65/15 (Visual)	Dry	7.5YR 3/4 Dark Brown	SM			Silty sand with gravel, homogeneous, sand is fine- to medium-grained, gravel is fine- to coarse grained. Matrix has less than 5% mottles, black (5YR 2.5/1) and yellowish red (5YR 4/6), and is magnetic. Sand fraction is 50% quartz, 40% feldspar, and 10% lithic fragments. Cobbles are 70% granitoid, 30% gabbroic (or possibly recrystallized metasediment) - abundant, rust staining. Large granitoid boulder from 3.5-4.5'.	_ 1608
6	None	5.03 316 8 5.82 264 12	17/26/57 (Lab)			ML/ CL-ML		Upper Till	Sandy silt with gravel, firm, laminated, sand is fine- to medium-grained, gravel is fine- to medium-grained. Matrix is magnetic and has abundant mottles (30-40%), dark yellowish gray (10YR 4/6) and grayish brown (2.5YR 5/2). Sand fraction is 70% quartz, 20% feldspar, and 10% lithic fragments. Cobbles are 80% magnetic chert iron formation, 10% granitoid, and 10% fine-grained black metasediment.	1606 1604
- 8 		6.32 251 17	24/48/28 (Lab)		10YR 4/3 Brown	SM			Silty sand with gravel, dense, homogeneous, sand is fine- to coarse-grained, gravel is fine- to coarse-grained. Matrix is slightly magnetic, has less than 5% disseminated mottles, very dark gray (10YR 3/1), dark brown (7.5YR 3/4), dark yellowish brown (10YR 4/6), and black mottles associated with rootlets. Increased mottles at 10-12'. Matrix has a faint rotten egg odor below 15', increasing odor with depth. Sand fraction lithology transition from 70% quartz, 10% feldspar, and 20% lithic fragments to 15% quartz, 65% feldspar, and 20% lithic fragments at 10'. Cobbles are 70% iron formation rocks (magnetic and non-magnetic), 25% granitoid, 5% other (troctolite, gabbroic).	- - 1602 -

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435
Telephone: 952-832-2600
Fax: 952-862-2601

Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odor, and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0.5-2', 2-4', 5-7.5', 7.5-10', 10-15', 15-19', 19-21'; Geotechnical samples: 0-1', 1-2', 2-3.5', 3.5-7.5', 7.5-10', 10-15', 15-21'; Shelby tubes: 6-7', 15-16', 16-18'

Client Poly	ration		Drill	Contra	actor	Boart	Longyear	LOG OF Boring R	S-06A T 2 OF 3		
Project Name	Polym	net Overb	urden Cl	naracteriz	ation Drill	Metho	od R	otasoni	С	DRAFT	
Number 23	/69-B75	INV			Drill	ing Sta	arted _	1/26/0	8 Ended 1/26/08	Elevation _1611.0	
Location No	orthMet N	/line Site			Log	ged By	MN_	IB/MJD	/REE	Total Depth _21.0	
SAMP LENGTH	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIP	TION	ELEV. FEET
12	None	6.81 235 17	21/49/30 (Lab)	Moist to	10YR 4/3	SM		Upper	magnetic, has less than 5% di (10YR 3/1), dark brown (7.5YI 4/6), and black mottles associa t 10-12'. Matrix has a faint roodor with depth. Sand fractior 10% feldspar, and 20% lithic fragments of the same than 100 feldspar, and 20% lithic fragments.	to coarse-grained. Matrix is slightly sseminated mottles, very dark gray R 3/4), dark yellowish brown (10YR ated with rootlets. Increased mottles of the nego dor below 15', increasing in lithology transition from 70% quartz, ragments to 15% quartz, 65% ents at 10'. Cobbles are 70% iron I non-magnetic), 25% granitoid, 5%	- - - - - - - - - - - - - -
16		6.75 38 18		Wet	Brown	Sivi		Till			- 1596 1594 1592

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odor, and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0.5-2', 2-4', 5-7.5', 7.5-10', 10-15', 15-19', 19-21'; Geotechnical samples: 0-1', 1-2', 2-3.5', 3.5-7.5', 7.5-10', 10-15', 15-21'; Shelby tubes: 6-7', 15-16', 16-18'

Additional data may have been collected in the field which is not included on this log.

(continued)

Project Name Polymet Overburden Characterization Drill Method Rotasonic Number 23/69-B75 INV Drilling Started 1/26/08 Ended 1/26/08 Elevation 1611.0	ET 3 OF 3
LIGITATION TO THE PART OF THE	
1	
Location NorthMet Mine Site Logged By MMB/MJD/REE Total Depth 21.0	
<u></u>	
Matrix Color atrix	ELEV.
Soil ph- Soil ph- Specific Cond. Matrix Color Moisture Moisture	FEET
- % Upper Till	
End of Boring - 21 feet	1590
	-
22+	
	-
	— 1588
24+	-
	-
	 1586
-	-
26+	
	— 1584
	-
	— 1582
	1.502
	-
+	
Barr Engineering Co. Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction and odor after HCl. No sulfides reaction with HCl or unusual odors.	ı, odor,

4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

observed, unless otherwise noted. Geochemical samples: 0.5-2', 2-4', 5-7.5', 7.5-10', 10-15', 15-19', 19-21'; Geotechnical samples: 0-1', 1-2', 2-3.5', 3.5-7.5', 7.5-10', 10-15', 15-21'; Shelby tubes: 6-7', 15-16', 16-18'

Client PolyMet Mining Corporation Project Name Polymet Overburden Characterization	Drill Contra				LOG OF Borin	ng RS-06R SHEET 1 OF 3
Number <u>23/69-B75 INV</u>	Drilling Sta	arted _	1/29/0	8 Ended 1/29/08	Elevation 1611.0	
Location NorthMet Mine Site	Logged By	MM	IB		Total Depth 21.5	
Soil pH-Specific Cond. **GR/SA/FINES** **Matrix* **Moisture*	Matrix Color ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPT		ELEV. FEET
	SM		Soil	See RS-06A, 0-1' for descriptio		- 1610
2+	SM		John	See RS-06A, 1-2' for descriptio		-
1000%	SM			See RS-06A, 2-4.75' for descrip		- 1608
4-	CL			See RS-06A, 4.75-7.5' for desc	ription.	- - - 1606
8+ 	SM		Upper Till	See RS-06A, 7.5-21.0' for desc	ription.	- - -1604 - - - -1602
Barr Engineering Co		Rer	marks:	Soil matrix and clasts were exam	ined for visible sulfides, HCl re	eaction, odor,
Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435				and odor after HCI. No sulfides, observed, unless otherwise noted	reaction with HCl, or unusual of the RS-06A log for sampling the RS-06A log for sampli	odors were ng intervals.

BARR Telephone: 952-832 Fax: 952-862-2601

Project Name Polymet Overburden Characterization	Drill Metho					
		oa <u>R</u>	otasoni		DRAFT SHEET	T 2 OF 3
Number 23/69-B75 INV_	Drilling Sta	arted _.	1/29/0	8 Ended 1/29/08	Elevation 1611.0	
Location NorthMet Mine Site	Logged By	y MN	1B		Total Depth 21.5	
SAMP. LENGTH & RECOVERY Matrix Effervescence Soil pH- ORP- Specific Cond. %GR/SA/ FINES Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPT		ELEV. FEET
12- - %001 14- 16- - %001 18-	SM	Rei	Upper Till	(continued) Soil matrix and clasts were example of the continued of the c	nined for visible sulfides, HCl reaction,	- 1598 - 1596 - 1594 - 1592 - odor,
Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601			i	and odor after HCl. No sulfides, observed, unless otherwise note	reaction with HCl, or unusual odors v d. See RS-06A log for sampling inter	/ere

Additional data may have been collected in the field which is not included on this log

POLYMET LOG OF BORING 2008 2369B75.GPJ BARR JAN06.GDT 4/22/08

Client Poly	Met Minir	ng Corpor	ation		[Orill Contr	Il Contractor Boart Longyear LOG OF Boring RS-								
Project Name	e Polym	et Overb	urden Cl	haracterizati	ion I	Orill Metho	ill Method Rotasonic DRAFT								
Number 23						Orilling Sta			8 Ended 1/29/08	Elevation 1611.0					
Location No.	orthMet N	/line Site			I	_ogged By	/ <u>MN</u>	1B		Total Depth 21.5					
SAMP. LENGTH	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIP	TION	ELEV. FEET				
- SA		ζ				SM	7	Upper	See RS-06A, 7.5-21.0' for des	scription.(continued)	-				
V								Bed- rock	Bedrock at 21.0'. Troctolite pi End of Boring - 21.5 feet	ece, 4" thick.	1590				
22-											- 1588 -				
26-											- 1586 -				
-											- 1584 -				
28-											- 1582 -				
	Bar 470	r Engin 00 W 77	eering	Co. Suite 200)		Re		and odor after HCI. No sulfides	mined for visible sulfides, HCl reas, reaction with HCl, or unusual or ed. See RS-06A log for sampling	dors were				

Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

Client Po					naracteriz				Boart otasoni	Longyear	LOG OF Boring DRAFT SHEE	RS-07 ET 1 OF 2
Number									1/24/0		Elevation 1608.0	
Location	Noi	thMet N	/line Site			Log	ged By	MM	IB/MJD	/REE	Total Depth 11.0	
DEPTH UNDER STREET	& RECOVERY	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPTI	ION	ELEV. FEET
-					Frozen	10YR 2/2 Very Dark Brown	PT		Peat	Fibrous peat; grass, roots, twigs	3.	
-		None	5.61 97.8 45	25/42/33 (Lab)	Wet	10YR 2/2 Very Dark Brown	OL/OH			95% organic material (roots, gra is silty sand with gravel. Less th mottles from 1.5-2'.	ass, branches). Mineral component nan 5% dark brown (10YR 3/3)	_
2+	100%	None		40/42/18 (Lab)	Moist	2.5Y 3/3 Dark Olive Brown	SM		Soil	Gravelly silty sand, 5% organic medium-grained. Less than 5% (7.5YR 3/3).	material, sand is fine- to 6 mottles and layers, dark brown	1606
4-	1	None	6.10 27.0 52	38/44/18 (Lab)	Moist	7.5YR 3/3 Dark Brown	SM			to coarse-grained, gravel is fine- subangular. Matrix is mottled: it 2/2) and minor strong brown (7.	us, trace organic matter, sand is fine to coarse-grained, subrounded to irregular, very dark brown (7.5YR 5/R 5/8) mottles. Sand fraction is 80% lithic fragments. Cobbles are diment, 5% black cherty iron	- - - - 1604 -
6	100%	None	6.40 60.0 17 6.61 38.0 24	30/60/10 (Visual) 47/39/14 (Lab)	Moist	5Y 2.5/1 Black	GM		Upper Till	Sand with silty gravel, homogen- coarse-grained, gravel is fine- to subangular. Sandier and slightly cobble lithologies are same as 3	o coarse-grained, subrounded to y drier toward 10'. Sand fraction and	- 1602 1600
	1							0000		(continued)	ined for visible sulfides. HCI reaction	¥ +

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 1-2', 2-3', 3-5', 5-6', 6-10', 10-11'; Geotechnical samples: 0-2', 2-5', 8-10', 10-11'

Client _	PolyN	let Minir	ng Corpor	ation		Dril	l Contra	actor	Boart	LOG OF Boring F	RS-07 12 OF 2
Project	Name	Polym	net Overb	urden Cl	naracteriz	ation Dril	l Metho	d R	otasoni		2012
Numbe	_23/	69-B75	INV			Dril	ling Sta	ırted	1/24/0	8 Ended 1/24/08 Elevation 1608.0	
Location		rthMet N	Mine Site			Log	ged By	MM	1B/MJD	/REE Total Depth 11.0	
DEPTH FEET	SAMP. LENGTH & RECOVERY	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPTION	ELEV. FEET
-	100%	None	7.15 -23.0 19	59/30/11 (Lab)	Wet	Gley1 2.5/10Y Greenish Black	GP-GM		Lower	Sandy gravel with silt, homogeneous, sand is fine-grained, gravel is fine- to coarse-grained, angular to subrounded. Matrix has a rotten egg odor after HCL, and a very dark brown (10YR 2/2) layer from 10-10.25'. Sand fraction is 50% quartz, 10% feldspar, and 40% lithic fragments. Bedrock at 11.0'.	_
-										End of Boring - 11 feet	_
12-	-										— 1596
-											
_											
14 –	-										— 1594
-											_
-											
-											_
16-	-										— 1592
-											_
_											_
18-	-										— 1590
_											_
-											_
-											-

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odor, and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 1-2', 2-3', 3-5', 5-6', 6-10', 10-11'; Geotechnical samples: 0-2', 2-5', 8-10', 10-11'

Client PolyMet Mining Corporation		LOG OF Boring RS-07R SHEET 1 OF 2	
Project Name Polymet Overburden Characterization	Drill Method Rotasonic SH		
Number <u>23/69-B75 INV</u>	Drilling Started 1/29/08 Ended 1/29/08 Elevation 1608.0		
Location NorthMet Mine Site	Logged By MMB Total Depth 14.5		
SAMP. LENGTH & RECOVERY Matrix Effervescence Soil pH- ORP- Specific Cond. %GR/SA/ FINES Moisture	ASTM LITHOLOGY Strattgraphic Unit	ELEV. FEET	
2	See RS-07 for description. PT Peat Soil SM Upper Till OC C	- - - - - - - - - - - - - - - - - - -	
BARR Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601	Continued) Remarks: Soil matrix and clasts were examined for visible sulfides, HCl react and odor after HCl. No sulfides, reaction with HCl, or unusual odo observed, unless otherwise noted. Geochemical samples: 10-12', Geotechnical samples: 1-2', 2-3', 3-6', 6-10', 10-14.5' Additional data may have been collected in the field which is not included on this log	rs were 13.5-14.5';	

Client PolyMet Mining Corporation Project Name Polymet Overburden Characterization							Drill Contractor Boart Longyear Drill Method Rotasonic				LOG OF Boring RS-07R DRAFT SHEET 2 OF 2	
Project Name Polymet Overburden Characterization Number 23/69-B75 INV							Drilling Started 1/29/08 Ended 1/29/08					
Location NorthMet Mine Site							Logged By MMB				Elevation 1608.0 Total Depth 14.5	
DEPTH FEET	SAMP. LENGTH & RECOVERY	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPT	<u></u>	ELEV. FEET
12-	SA 100% 8A 8 1		7.48 -152 -152 -152 -152 -152			2			Lower Till	fractures. Sample is 0.5-4" thic Virginia formation. Rinse test a (floating graphite from graphite rocks?).(continued) End of Boring - 14.5 feet	pined for visible sulfides. HCl reaching for visible sulfides. HCl reaching the sulfides is the sulfides of the sulfides is the sulfides in the sulfides is the sulfides in the sulfides is the sulfides in the sulfides in the sulfides is the sulfides in the sulfides in the sulfides in the sulfides is the sulfides in th	- 1594

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435
Telephone: 952-832-2600
Fax: 952-862-2601

and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 10-12', 13.5-14.5'; Geotechnical samples: 1-2', 2-3', 3-6', 6-10', 10-14.5'

_			ng Corpor		naracteriz				Boart otasoni		S-08A T 1 OF 2
Numbei				uruen Ci	iai acteriz				1/26/0	9 Ended 1/26/09	
			/line Site				-	_	B/MJD		
	_						,			Total Depth 11.0	1
DEPTH FEET	AMP. LENGTH RECOVERY	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPTION	ELEV.
_	SAMP.	<u></u>	ď			Σ		⊟	ß	Silby cand with gravel, with up to 20% organic material	
_		None	4.35 347.5 196	15/55/30 (Visual)	Moist	7.5YR 3/4 Dark Brown	SM		Soil	Silty sand with gravel, with up to 20% organic material, homogeneous, dense, sand is fine-grained, gravel is fine-grained, subangular to subrounded. Matrix has 2-5% dark reddish brown (2.5YR 3/4) mottles associated with disseminated rootlets and pebbles. Also less than 1% gray (5YR 5/1) mottles and layer at 1'. Sand fraction is 65% quartz, 10% feldspar, and 15% lithic fragments. Cobbles are fine-grained black metasediment, black	_ 1590
2-	100%					10YR 4/6				chert/iron formation, less than 5% green-black crystalline rock with quartz veins (possibly Archean). Silty sand with gravel, homogeneous, loose, sand is fine- to medium-grained, gravel is fine- to coarse-grained, subrounded to subangular. Occasional lenses with up to 40% clay (low plasticity). Matrix is magnetic, has mottles as above, also 30% strong brown (7.5YR 5/8) irregular to wavy mottles from 3-4'. Sand fraction is 70% quartz, 10% feldspar, and 20% lithic fragments. Cobbles are	-
4-	1	None	5.18 287.6 19 5.63 262.4 16	20/60/20 (Visual)	Wet to Moist	Dark Yellowish Brown to 2.5Y 3/3 Dark Olive Brown	SM			fine-grained black metasediment, fine-grained magnetic and non-magnetic cherty iron formation with rust coatings.	— 1588 - -
6-	V								Upper Till	Gravelly silty sand, homogeneous, dense, sand is fine- to coarse-grained, gravel is fine- to coarse-grained, angular to subangular. Matrix has a faint rotten egg odor after HCL, 1-2% yellowish red (5YR 4/6) mottles. Sand fraction is 75% quartz, 5% feldspar, and 20% lithic fragments. Cobbles are 40% magnetic black iron formation, 30% fine-grained black metasediment, 25% non-magnetic black iron formation, and 5% granitoid.	1586
8-	100%	None	5.78 217.4 22	30/43/27 (Lab)	Moist	10YR 4/2 Dark Grayish Brown	SM				- - 1584 - - - - 1582
-	V									(continued)	_

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odor, and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0.25-1', 1-5', 5-11'; Geotechnical samples: 1-5', 5-11'

				^				
Project Name Polymet Overburden Characterization	rill Contractor Boart Longyear rill Method Rotasonic DRAFT SHEET							
Number <u>23/69-B75 INV</u>	Orilling Started _1/26/08	Ended _1/26/08	Elevation 1591.0					
Location NorthMet Mine Site	ogged By MMB/MJD		Total Depth 11.0					
Soii ph-ORP. Specific Cond. %GR/SA/FINES Matrix Color	ASTM LITHOLOGY Stratigraphic Unit	DESCRIPTIO	N ELE FEE					
6.77 68.3 34	SM Upper Till	lrock at 11'. Troctolite, no visik I of Boring - 11 feet	ole sulfides.	30				
12-			- - - 157 -	78				
14 —			- - - 157 -	76				
16 			_ _ 157 -	74				
18-			- - 157 -	72				
Barr Engineering Co.	Remarks: Soil r	matrix and clasts were examine	ed for visible sulfides, HCl reaction, odor, action with HCl, or unusual odors were	$\overline{}$				

4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

observed, unless otherwise noted. Geochemical samples: 0.25-1', 1-5', 5-11'; Geotechnical samples: 1-5', 5-11'

Client	PolyN	let Minin	g Corpor	ration		Dril	I Contra	actor	Boart	LOG OF Boring R	S-09
Project	Name	Polym	et Overb	ourden Ch	naracteriz	ation Dril	l Metho	d R	otasoni		TOFT
Numbe	r <u>23/</u>	69-B75 I	NV_			Dril	ling Sta	arted .	1/23/0	8 Ended 1/23/08 Elevation 1610.5	
Locatio	n <u>No</u>	rthMet N	line Site			Log	ged By	RE	E/MJD	Total Depth <u>8.0</u>	
DEPTH FEET	SAMP. LENGTH & RECOVERY	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPTION	ELEV. FEET
-		None		5/15/80 (Visual)	Frozen	7.5YR 2.5/3 Very Dark Brown	OL/OH		Soil	Silt with sand, homogeneous, sand is fine-grained. Organic content decreases from 75% to 50%. Some grayish mottles and black (7.5YR 2.5/1) lenses, matrix is magnetic. Sand faction is 50% quartz, 30% feldspar, and 20% lithic fragments. Cobbles are 80% fine-grained black metasediment and 20% granitoid. Abundant rust-colored staining on clasts. Gravelly silty sand, homogeneous, sand is fine-grained, subangular	— 1610 –
2- -	100%									to subrounded, gravel is fine- to coarse-grained, subangular to subrounded. Color change is gradational. Matrix is magnetic. Sand fraction is 50% quartz, 25% feldspars, and 25% lithic fragments. Cobbles are 60% fine-grained black metasediment, 20% magnetic black siltstone, 5-10% medium-grained bedded/foliated metasediment, 10% granitoid, and 5% biotite argillite. One cobble has orange precipitate or oxidation along microfractures. Increased granitoid cobbles from 5 to 7'. Occasional rust colored staining on clasts.	- - 1608 -
- 4- -		None	5.96 175.0 15	32/50/18 (Lab)	Dry to Moist	10YR 4/4 Dark Yellowish Brown to 2.5Y 4/4 Olive Brown	SM		Upper Till		- - 1606 -
- 6- -	100%	None	6.22 116.7 13								- - 1604
8-	100%		5.88 182.0 2	15/20/65 (Visual)	Wet	2.5Y 3/1 Very Dark Gray	CL		Lower Till	Sandy lean clay with gravel, homogeneous, soft, sand is fine-grained, gravel is fine-grained. Matrix is magnetic, has faint rotten egg odor after HCL. Sand fraction is 70% quartz, 10% feldspars, and 20% lithic material. Cobbles are 75% granitoid, 20% fine-grained black metasediment with rust-colored staining on some surfaces, and 5% banded red and black iron formation. Bedrock at 8'. Troctolite, no visible sulfides. End of Boring - 8 feet	- - - - 1602
-		Bar	r Engin	neering	Co. Suite 20	20		Rei		Soil matrix and clasts were examined for visible sulfides, HCl reaction, or and odor after HCl. No sulfides, reaction with HCl, or unusual adoors because upless of the wide pated. Googlepping samples: 0.41, 2.65, 6.	ere

Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

observed, unless otherwise noted. Geod 8'; Geotechnical samples: 0-1', 1-7', 7-8'

Client Poly	Met Minir	ng Corpor	ration		Dril	l Contra	actor	Boart	LOG OF Boring R	RS-10
Project Nan	ne Polyn	net Overb	urden Ch	naracteriz	ation Dril	l Metho	d R	otasoni		1012
Number 2	3/69-B75	INV_			Dril	ling Sta	arted _	1/25/0	8 Ended 1/25/08 Elevation 1602.5	
Location N	NorthMet N	Mine Site			Log	ged By	MM	IB/MJD	/REE Total Depth 16.0	
SAMP. LENGTH	& KECOVERY Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPTION	ELEV. FEET
_	% None			Frozen	7.5YR 2.5/2 Very Dark Brown	OL/OH		Soil	Organic soil with sand. 80% organic matter (grass, roots, branches). Mineral fraction is silty sand, laminated lenses [dark yellowish brown (10YR 3/6) and black (10YR 2/1)].	— 1602
	None		35/55/10 (Visual)	Moist	10YR 2/2 very Dark Grayish Brown	SP-SM			Sand with silt and gravel, homogeneous, fine- to medium-grained, gravel is fine- to coarse-grained, subrounded to subangular. Sand fraction is 40% quartz, 40% feldspar, and 20% lithic fragments. Cobbles are 70% granitoid, and 30% fine-grained black metasediment with rust-colored staining.	_
2+ 3	None	6.07 193.0 30	25/60/15 (Visual)	Moist	10YR 3/6 Dark Yellowish Brown	SM			Silty sand with gravel, homogeneous, fine- to medium-grained, gravel is fine- to coarse-grained, angular to subangular. Matrix has mottles associated with break-down of pebbles [bluish black (gley2 2.5/5PB)]. Sand fraction is 20% quartz, 60% feldspar, and 20% lithic fragments. Cobbles are 30% granitoid and 70% black fine-grained metasediment.	— 1600
4	None	5.73 241.6 12	40/41/19 (Lab)	Moist	7.5YR 3/3 Dark Brown	GM/SN			Sandy, silty gravel, homogeneous, fine- to coarse-grained, trace angular to subangular pebbles and cobbles. Sand fraction is 40% quartz, 30% feldspar, and 30% lithic fragments. Cobbles are 95% fine-grained metasediment with possible trace pyrite or pyrrhotite, and 5% granitoid.	- 1598
6-	%001 None	7.08 60.2 20	20/75/5 (Visual)	Dry to Moist	10YR 4/3 Brown	SP	4	Upper Till	Sand with gravel, homogeneous, fine- to coarse-grained, with 20% fine- to medium-grained gravel, angular to subangular. Matrix is mottled with irregular yellowish red (5YR 4/6) and white (5YR 8/1) mottles. White mottles have no HCL reaction, but appear to be weakly cemented. Sand fraction is 85% quartz, 5% feldspar, and 10% lithic fragments. Cobbles are 95% black fine-grained metasediment and 5% magnetic cherty iron formation.	_ 1596
8-	None %001	6.81 152.3 30	40/40/20 (Visual)	Dry	5Y 3/1 Very Dark Gray	SM			Silty sand with gravel, homogeneous, fine- to medium-grained, gravel is fine- to coarse-grained, angular to subangular. Matrix has a faint odor after HCL. Sand fraction is 10% quartz, 20% feldspar, and 70% lithic fragments. Cobbles are 80% black fine-grained metasediment, 10% magnetic cherty iron formation, and 10% granitoid. Supernatant from 8.0' rinse test has metallic sheen/possible graphite from graphite-bearing Virginia formation rocks.	_ 1594 _ _
							11.111		(continued)	
	Bar	r Engin	ooring	Co			Rer	marks:	Soil matrix and clasts were examined for visible sulfides, HCl reaction, o	odor.

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0-1', 1-2', 2-3', 3-5.5', 5.5-7.5', 7.5-10', 10-14'; Geotechnical samples: 2-3', 3.5-5', 5.5-7.5', 7.5-10', 10-14'

_			ng Corpor							Longyear	LOG OF Boring F	RS-10
-				urden Cl	haracteriz		Metho					
Number			/line Site				ling Sta ged By				Elevation 1602.5	
2004101				I							Total Depth 16.0	
DEPTH FEET	SAMP. LENGTH & RECOVERY	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPT	ΓΙΟΝ	ELEV. FEET
- 12- - - - 14-	75%	None	6.50 145.3 26	40/45/5 (Visual)	Moist	5Y 4/3 Olive	SP		Upper Till	fine- to coarse-grained, angula white lenses (precipitate?), no is 10% guartz, 10% feldspar, a	ining, and 5% granitoid.	- 1592 - - - 1590 -
16 –	100%						_		Bed- rock	End of Boring - 16 feet		- 1588 - - - - 1586
18 -	-											- - - - 1584

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odor, and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0-1', 1-2', 2-3', 3-5.5', 5.5-7.5', 7.5-10', 10-14'; Geotechnical samples: 2-3', 3.5-5', 5.5-7.5', 7.5-10', 10-14'

Client PolyM	ng Corpor	ration			Orill Contr	ractor	LOG OF Boring I	RS-11			
Project Name	Polym	et Overb	ourden Ch	naracteriz	ation D	Orill Meth	od _R	otasonio	3	DRAFT SHEE	T 1 OF 4
Number 23/	69-B75 I	INV				Orilling St	arted	1/25/0	8 Ended <u>1/25/08</u>	Elevation _1594.0	
Location No	rthMet M	/line Site			L	ogged B	y <u>MN</u>	/IB/MJD		Total Depth 33.0	
SAMP. LENGTH	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIP	TION	ELEV. FEET
8AN 200% 8 P	None	5.89 107.1 40		Frozen	5YR 2.5, Black	/2		Peat	mineral soil below 5'.	t material). Up to approximately 10% 5% organic matter, sand is fine- to	- 1592 1590 1588 1586
	None		43/43/14 (Lab)	Wet	Grayish Brown	n SM		Upper Till	coarse-grained, gravel is fine-	to coarse grained. Sand fraction is d 60% lithic fragments. Cobbles are	
Barr Engineering Co. 4700 W 77th St. Suite 200							Re	á	and odor after HCl. No sulfides	mined for visible sulfides, HCl reaction, , reaction with HCl, or unusual odors v ed. Geochemical samples: 0-9 5', 11 !	vere

Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

17-25', 25-28', 28-31', 31-33'; Geotechnical samples: 9.5-10', 10-11.5', 17-25', 25-28', 28-31', 31-33'

Client PolyMet Mining Corporation	Drill Contractor Boart Longyear LOG OF Boring R	
Project Name Polymet Overburden Characterization	Drill Method Rotasonic DRAFT	2 OF 4
Number <u>23/69-B75 INV</u>	Drilling Started <u>1/25/08</u> Ended <u>1/25/08</u> Elevation <u>1594.0</u>	
Location NorthMet Mine Site	Logged By MMB/MJD Total Depth 33.0	
SAMP. LENGTH & RECOVERY Matrix Soil ph- ORP- Specific Cond. %GR/SA FINES Matrix Color	ASTM ASTM LITHOLOGY Stratigraphic Unit Unit	ELEV. FEET
6.31 20/65/15 (Visual) 10YR Bla 12 —	quartz, 5% feldspar, and 65% lithic fragments. Cobbles are 80-90% fine-grained black metasediment, 5-10% granitoid, and 5-10% biotite-containing anorthosite.	- - - - - - - - - - - - - - - -
18 — None 6.56 35/59/6 Moist to Gle 2.5/8 Bla	N SP-SM Cult Guide	- 1576 - - -

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odor, and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0-9.5', 11.5-17', 17-25', 25-28', 28-31', 31-33'; Geotechnical samples: 9.5-10', 10-11.5', 17-25', 25-28', 28-31', 31-33'

Client PolyMe	t Minin	g Corpor	ation		Dril	l Contrac	ctor	Boart	Longyear	LOG OF Boring	RS-11 T 3 OF 4
Project Name _	Polyme	et Overbi	urden Ch	naracteriza	ation Dril	l Method	l Ro	otasoni	3	DRAFT SHEE	1 3 OF 4
Number _23/69	9-B75 II	NV_			Dril	ling Star	ted _	1/25/0	8 Ended _1/25/08	Elevation 1594.0	
Location North	hMet M	ine Site			Log	ged By	MM	B/MJD		Total Depth 33.0	
SAMP. LENGTH	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPT		ELEV. FEET
22-	None	6.51 17.0 9		Moist to Wet	Gley1 2.5/N Black	SP-SM		Out- wash	20-25': Same as 17-20' interval	. Note low recovery.	- - - - - - - - -
26 %001	None	6.33 31.3 25	0/90/10 (Visual) 30/65/5 (Visual)	Wet	10YR 2/1 Black	SW-SM to SP			Sand is fine- to medium-grained 2% organic matter in lower part egg odor after HCL. Sand fract 45% lithic fragments. Cobbles metasediment, 10% magnetic organitoid. Note: Geotechnical laboratory hindicates 23% gravel, 67% sand	cherty iron formation, and 5% nonogenized unit. Grain size analysis	- 1566
-	None		34/47/19 (Lab)	Wet	Gley1 3/10Y Very Dark Greenish Gray	SM		Lower Till	HCL. Sand fraction is 60% qua	artz, 10% feldspar, and 30% lithic ne-grained black metasediment, 20%	-

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601 Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odor, and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0-9.5', 11.5-17', 17-25', 25-28', 28-31', 31-33'; Geotechnical samples: 9.5-10', 10-11.5', 17-25', 25-28', 28-31', 31-33'

Client _	Client PolyMet Mining Corporation Drill Contractor Boart Longyear Project Name Polymet Overburden Characterization Prill Method Rotasonic Drill Method Rotasonic LOG OF Boring RS-11 DRAFT												
-				urden Cl	naracteriz						<u>DRAFI</u>		
Number									1/25/0		Elevation 1594.0		
		thMet N	line Site			Log	ged By	MN	1B/MJD	1	Total Depth 33.0		
DEPTH FEET	SAMP. LENGTH & RECOVERY	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIF	PTION	ELEV. FEET	
_			6.50 -49.7 70				SM			fine- to medium-grained. Ma HCL. Sand fraction is 60% of fragments. Cobbles are 70% granitoid, and 10% other. (con	,	-	
- 32- -	100%	None		39/46/15 (Lab)	Wet	Gley1 3/10Y Very Dark Greenish Gray	SM		Lower	fine- to medium-grained. Col metasediment, 30% granitoid	eous, fine- to coarse-grained, gravel is bbles are 65% fine-grained black I, and 5% gabbroic (no visible sulfides).	- 1562 	
										Bedrock at 33.0'. End of Boring - 33 feet			
34 –	-											— 1560	
_												_	
36 –	-											— 1558	
_												_	
38-	_											_ — 1556	
-												-	
-	_											_	
		■ Don	r Facin	neering	<u> </u>			Re	marks:	Soil matrix and clasts were exa	amined for visible sulfides, HCl reaction, o	odor.	

Edina, MN 55435
Telephone: 952-832-2600
Fax: 952-862-2601

and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0-9.5', 11.5-17', 17-25', 25-28', 28-31', 31-33'; Geotechnical samples: 9.5-10', 10-11.5', 17-25', 25-28', 28-31', 31-33'

Client Pol	yMet Min	ing Corpo	ration		Drill	Contra	actor	Boart	LOG OF Boring F	RS-12
Project Nar	ne Poly	met Overb	urden Cl	naracteriz	ation Drill	Metho	d R	otasoni		1013
Number _2	23/69-B75	INV			Drill	ing Sta	rted .	1/23/0	8 Ended 1/23/08 Elevation 1610.0	
Location _	NorthMet	Mine Site			Log	ged By	_MN	IB/MJD	Total Depth 22.0	
SAMP. LENGTH	& RECOVERY Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPTION	ELEV. FEET
-	None		2/30/68 (Visual)	Frozen	7.5YR 2.5/2 Very Dark Brown to 7.5YR 2.5/3 Very Dark Brown	ML		Soil	Sandy silt, homogeneous, sand is fine-grained. Decreasing organic material from 0-2'. Approximately 2% medium-grained charcoal pieces in soil. Several clay coatings, very dark gray (7.5YR 3/1), approximately 2 mm thick at 1.2'. Sand fraction is 70% quartz, 20% feldspar, and 10% lithic fragments.	-
2	%001 Weak	6.77 114.8 8	2/95/3 (Visual)	Dry to Moist	10YR 5/4 Yellowish Brown	SP		Out- wash	Sand, sorted, fine-grained, angular to subround. Matrix has less than 5% carbonate-cemented nodules, weakly cemented, up to 2 cm in size. Several cobbles of black fine-grained metasediment, granitoid, and other lithologies.	- 1608 1606
8-	None	7.17 111.7 33	22/55/23 (Lab)	Moist Moist to Wet	10YR 4/4 Dark Yellowish Brown	SM		Upper Till	Silty sand with gravel, homogeneous, fine- to medium-grained, gravel is fine- to coarse-grained, subrounded to subangular. Matrix has less than 5% dark reddish brown (5YR 3/4) mottles, irregular, up to 1 cm in diameter at 7'. Sand fraction is 80% quartz, 5% feldspar, and 15% lithic fragments. Cobbles are 50% granitoid, 20% black, fine-grained metasediment, 20% magnetic cherty iron formation, 5% troctolite containing approximately 5% disseminated phyrrotite and chalcopyrite, and 5% quartzite. 8-8.5': Zone of weakly cemented carbonate layers and nodules. Occurs as masses or bridges between grains; pink (7.5YR 7/4).	- 1604 - - - 1602
 									(continued)	<u></u>

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odor, and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 3-5', 7-9', 16-18', 17-20', 20-22'; Geotechnical samples: 0-2', 2-3', 3.5-5.5', 5.5-10', 10-15', 15-19.5', 19.5-20.5', 20.5-22'; Jar samples: 0-1', 4-5', 7-9', 20', 21'

_			ig Corpoi	ration ourden Ch	naracteriz				Boart otasoni	Longyear	LOG OF Boring F	RS-12 T 2 OF 3
Numbe	23/	69-B75	INV			Drill	ing Sta	arted	1/23/0	8 Ended _1/23/08	Elevation 1610.0	
Location	n <u>No</u>	rthMet N	line Site			Log	ged By	MN	IB/MJD		Total Depth 22.0	
DEPTH FEET	SAMP. LENGTH & RECOVERY	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPT	ION	ELEV. FEET
- 12- - - 14-	80%	Weak	7.19 116.6 15	26/53/21 (Lab)	Wet	2.5Y 4/3 Olive Brown	SM		Upper Till	has less than 5% dark reddish up to 1 cm in diameter at 7'. Sa feldspar, and 15% lithic fragme black, fine-grained metasedime formation, 5% troctolite containi phyrrotite and chalcopyrite, and	I, subrounded to subangular. Matrix brown (5YR 3/4) mottles, irregular, and fraction is 80% quartz, 5% nts. Cobbles are 50% granitoid, 20% nt, 20% magnetic cherty iron ng approximately 5% disseminated 5% quartzite. (continued)	- - - - - - - - - - - - -
	100%		7.14 44 14	20/70/10 (Visual)	Wet	2.5Y 4/3 Olive Brown	SM		Out-	sand, gravel is fine- to coarse-g Tiny fractures in soil matrix have discoloration to dark gray (2.5y 5% feldspar, and 10% lithic frac fine-grained black metasedimer 40% black cherty iron formation fractures and rust-colored stain 19-19.5': Silt, well-sorted, abrug grayish brown (10YR 3/2). Sand, homogeneous, fine- to co	(4/1). Sand fraction is 85% quartz, gments. Cobbles are 40% nt with common red-brown staining, a with yellow precipitate in some ing on surfaces, and 20% granitoid.	- - 1594 - - - 1592 -
_	lacksquare			(Visual)	Wet	Brown	SM		wash	subrounded.	- -	_
		_					\vdash	_	<u> </u>	(continued)	nined for visible sulfides HCl reaction	

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 3-5', 7-9', 16-18', 17-20', 20-22'; Geotechnical samples: 0-2', 2-3', 3.5-5.5', 5.5-10', 10-15', 15-19.5', 19.5-20.5', 20.5-22'; Jar samples: 0-1', 4-5', 7-9', 20', 21'

Client PolyM	/let Minir	na Corpor	ration		Drill	Contra	actor	Boart	LOG OF Boring R	S-12		
Project Name				naracteriz	TO THE SHEET SHEET							
Number 23/						ing Sta	arted .	1/23/0	8 Ended 1/23/08 Elevation 1610.0			
Location No	rthMet N	/line Site			Log	ged By	MN	1B/MJD	Total Depth _22.0			
SAMP. LENGTH	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPTION	ELEV. FEET		
	Weak		0/100/0 (Visual)	Wet	10YR 4/3 Brown	SM		Out- wash	Sand, homogeneous, fine- to coarse-grained, subangular to subrounded. (continued)			
%00L -	None	7.50 68.9 26	15/70/15 (Visual)	Wet	Gley1 3/N Very Dark Gray	SM		Lower Till	Silty sand with gravel, homogeneous, dense. Sand is fine-to medium-grained, gravel is fine- to coarse-grained, subangular to subrounded. Matrix has rotten-egg odor after HCL which may be associated with yellowish brown (10YR 5/6) mottles that are 1-3 mm in diameter and disseminated throughout 1-2% the matrix. Matrix also contains 20% very dark grayish brown (2.5Y 3/2) mottles from 20.5 to 21'. Sand fraction is 50% quartz, 10% feldspar, and 40% lithic fragments. Cobbles are 40% troctolite containing trace sulfides and patches of iron staining, 30% granitoid, 15% black, fine-grained and patches of iron staining, 30% granitoid, 15% black, fine-grained and patches of iron staining.	_ _ 1588		
-									metasediment, and 5% black chert or siltstone with 2% pyrrhotite veins. Bedrock at 22'. Dark gray-black troctolite containing 2% disseminated sulfides up to 2 mm in diameter. Chalcopyrite and pyrrhotite. End of Boring - 22 feet	-		
24—										— 1586		
-										_		
-										_		
-										_		
26+										— 1584		
										_		
-										_		
28-										1582		
-										_		
-										-		
	<u> </u>	<u> </u>					Pol	marke:	Soil matrix and clasts were examined for visible sulfides. HCl reaction.	odor		

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 3-5', 7-9', 16-18', 17-20', 20-22'; Geotechnical samples: 0-2', 2-3', 3.5-5.5', 5.5-10', 10-15', 15-19.5', 19.5-20.5', 20.5-22'; Jar samples: 0-1', 4-5', 7-9', 20', 21'

Client _F	olyN	let Minin	ıg Corpor	ration		Dri	II Contra	actor	Boart	LOG OF Boring R	S-13
Project N	lame	Polym	et Overb	ourden Ch	naracteriz	ation Dri	II Metho	d Ro	otasoni		TOFT
Number	23/	69-B75	INV			Dri	lling Sta	rted _	1/24/0	8 Ended 1/24/08 Elevation 1606.0	
Location	No	rthMet N	line Site			Log	ged By	MM	B/MJD	Total Depth 10.0	
DEPTH	SAMP. LENGIH & RECOVERY	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPTION	ELEV. FEET
-	100%	None	6.15 62.7 42	5/85/10 (Visual)	Frozen	7.5R 2.5/3 Very Dark Brown	SP-SM		Soil	Sand with silt, homogeneous, fine- to coarse-grained, subangular to subrounded. Organic matter decreases from 70% to 10% between 0-1.5'. Sand fraction is 70% quartz, 10% feldspar, and 20% lithic fragments. Several cobbles of fine-grained, black metasediment with rust-colored staining on surfaces.	-
2	<u>, </u>	None		5/65/30 (Visual)	Wet	7.5R 2.5/3 Very Dark Brown and 7.5R 3/1 Very Dark Gray	SM			Silty sand, variegated, homogeneous, dense, fine- to medium-grained, subangular to subrounded, trace organic material. Several very dark gray (7.5YR 3/1) lenses. Sand fraction is same as 0-1.5' interval, cobbles are fine-grained black metasediment with rust-colored surfaces. Possible perched water at 1.5'.	<u> </u>
4-	100%		6.07 106.6 27			Gley1 4/5GY				Gravelly silty sand, homogeneous, dense, fine- to medium-grained. Gravel is fine- to coarse-grained, angular to well-rounded. Matrix has dark gray brown, dark red brown, and black mottles, and has a weak rotten egg odor after HCL. Sand fraction is 80% quartz and 20% lithic fragments. Cobbles are 65% black chert/siltstone iron formation containing some rust staining and yellow precipitate, 20% granitoid, 10% black, fine-grained metasediment, and 5% pink quartzite.	- - 1602
-		None	6.47 72.3 22	34/41/25 (Lab)	Moist	Dark Greenish Gray	SM		Lower Till		-
6 +										Interval is too destroyed by drilling to classify.	1600
8 -	20%								Bed- rock	Bedrock at 8': Dark gray-black troctolite containing 5% visible sulfides (30% pyrrhotite, 50% chalcopyrite, 20% pyrite).	— 1598 - - -
										End of Boring - 10 feet	
		Bar 470	r Engin 0 W 77	neering 7th St. 3	Co. Suite 20	00		ĸer		Soil matrix and clasts were examined for visible sulfides, HCl reaction, or and odor after HCl. No sulfides, reaction with HCl, or unusual odors we observed, unless otherwise noted. Geochemical samples: 0-1.5', 1.5-2	ere

Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

2.5-6', 8-10'; Geotechnical samples: 0-1.5', 1.5-2.5', 2.5-6'

Client PolyN	1et Minir	ng Corpoi	ration		Drill	Contr	actor	Boart	Longyear	LOG OF Boring R	S-14A
Project Name				naracteriza				otasoni		DRAFT SHEET	T 1 OF 1
Number 23/	69-B75	INV			Drill	ing Sta	arted	1/24/0	8 Ended 1/24/08	Elevation 1609.0	
Location No	rthMet N	/line Site			Log	ged By	/ RE	E/MJD		Total Depth 5.0	
SAMP LENGTH	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIP	TION	ELEV. FEET
-	None		40/31/29 (Lab)	Frozen	10YR 2/1 Black to 10YR 3/6 Dark Yellowish Brown	GM		Soil	Silty gravel with sand and orga from 90%-70%, sand is fine- to change.	anic fines, decreasing organic matter o medium-grained. Gradational color	- 1608
2 %09	None	5.41 239.0 19	10/70/20 (Visual)		7.5YR 3/4 Dark Brown	SM			fine- to coarse-grained, subang approximately 10% rootlets with	d is fine- to medium-grained, gravel is gular to angular. Matrix has th associated very dark brown (7.5YR 00% black fine-grained metasediment.	-
4-	None		40/36/24 (Lab)	Moist	10YR 3/4 Dark Yellowish Brown	GM		Upper Till	Silty gravel with sand, homoge medium-grained, gravel is fine subrounded. Cobbles are 90% black coarse-grained gabbro (r	- to coarse-grained, subangular to 6 fine-grained black metasediment, 5%	1606
6-									Bedrock at 5.0'. Black biotite a End of Boring - 5 feet	argillite.	- 1604 - -
8											- 1602 - -
-											- 1600 - -

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odor, and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0-1.5', 1.5-3', 3-5'; Geotechnical samples: 0-1.5', 1.5-3', 3-5'

_			ng Corpor						t Longyear	LOG OF Boring RS DRAFT	S-14B T 1 OF 1			
-				urden C	haracterization	Drill Met								
		69-B75				Drilling S				Elevation 1609.0				
Localio	II <u>INO</u>		/line Site			Logged	Бу _г	KEE/IVIJ	<u></u>	Total Depth 5.0				
DEPTH FEET	SAMP. LENGTH & RECOVERY	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	ASTM)	Stratigraphic	DESCRIP	TION	ELEV. FEET			
-						GM		Soi	See RS-14A, 0-1.5' interval for See RS-14A, 1.5-3' interval for		- 1608			
2- - - - 4-	100%					GN		Uppo Till	Mottles are yellowish red (5YR (10YR 3/2). Rust coloring also	erval. Slightly fewer fines, mottled. (4/6) and very dark grayish brown on most cobbles. Cobbles are stic cherty iron formation and 5%	 1606 			
-	V							6	Bedrock at 5.0'. Black biotite a End of Boring - 5 feet	argillite.	1604 			
6 - - - - 8 -											- 1602 -			
- - -											- 1600 - -			
Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601								Remarks: Soil matrix and clasts were examined for visible sulfides, HCl reaction, odd and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: 0-1.5', 1.5-3', 3 Geotechnical samples: 0-1.5', 1.5-3', 3-5' Additional data may have been collected in the field which is not included on this log.						

Additional data may have been collected in the field which is not included on this log.

POLYMET LOG OF BORING 2008 2369B75.GPJ BARR JAN06.GDT 4/22/08

Client PolyMet Min	ing Corpo	ration		Drill	Contra	actor	Boart	LOG OF Boring RS-1	5Α-Ε Γ1 OF 1
Project Name Poly	met Overb	urden Cl	naracteriz	ation Drill	Metho	d R	otasoni		
Number <u>23/69-B7</u>	5 INV			Drill	ing Sta	rted	1/27/0	8 Ended 1/27/08 Elevation 1615.5	
Location NorthMet	Mine Site			Log	ged By	MM	IB/REE	Total Depth <u>0.5</u>	
SAMP. LENGTH & RECOVERY Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPTION	ELEV. FEET
₩ 100%	5.59 275	1/46/53	Moist	Black 7.5YR 3/3	OL/OH		Peat	Fibrous peat.	
-	104	(Lab)		Dark Brown	ML		Soil	Sandy silt with organic material, homogeneous, no odor, no mottles, no visible sulfides. Hand auger refusal on rocks. End of Boring - 0.5 feet	_ 1614
2-									-
4-									— 1612 —
6-									_ 1610
									_ _ 1608
8-									_
	arr Fagin							Soil matrix and clasts were examined for visible sulfides. HCl reaction.	- 1606 -

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435
Telephone: 952-832-2600
Fax: 952-862-2601 and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: RS-15A-D 0-0.5'; Geotechnical samples: 0-0.5'

Client PolyMet Mining Corporation	Drill Contrac		OF Boring RS-16A-C SHEET 1 OF 1
Project Name Polymet Overburden Ch	naracterization Drill Method	Rotasonic	<u>FI</u>
Number <u>23/69-B75 INV</u>	Drilling Starte	ed _1/27/08	1605.0
Location NorthMet Mine Site	Logged By _	MMB/REE Total Depth	1_2.0
SAMP. LENGTH & RECOVERY Matrix Effervescence Soil pH- ORP- Specific Cond.	Moisture Matrix Color ASTM	Stratigraphic Unit Unit Contact Contac	ELEV. FEET
5.29 290 (Lab)	Moist 10YR 3/6 Dark Yellowish Brown	Silty sand, homogeneous, no odor, no mottles	e, no visible sulfides.
4-		Hand auger refusal on rocks. End of Boring - 2 feet	- 1602 -
6-			- 1600 -
8-			- 1598 -
			1596
Rarr Engineering	Co	Remarks: Soil matrix and clasts were examined for visible	e sulfides, HCl reaction, odor.

Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601

and odor after HCl. No sulfides, reaction with HCl, or unusual odors were observed, unless otherwise noted. Geochemical samples: RS-16B 0-2'; Geotechnical samples: 0-2'

Client P	olyMet	Corpor	ation			Drill Contr	actor	Boart	Longyear	LOG OF Boring RS	S-17A	
Project Na	ame _F	Polyme	t Overb	urden Ch	naracteriza	ation	Drill Metho	od R	otasoni	С	DRAFT SHEET	
Number	23/69-	B75 IN	1V				Drilling Sta	arted	1/25/0	8 Ended 1/25/08	Elevation _1598.0	
Location	Northl	Met Mi	ne Site				Logged By	/ <u>MN</u>	ИΒ		Total Depth 8.0	
DEPTH SEET OF SEED OF	& RECOVERY		Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIP	TION	ELEV. FEET
-					Frozen	Dark Brow	OL/OH		Soil		roots, grass, vegetative material. ery fine- to fine-grained. Gravel is fine-	-
2-	110%			30/37/33 (Lab)	Dry to Moist	Brow	n SM			to coarse-grained. Possible lo is subangular to subrounded v	ow-plasticity clay from 1 to 2.5'. Gravel	_ — 1596 _
4-					Moist	Dark Brow			Upper			_ 1594
_	<u>/</u>			44/43/13 (Lab)	Moist	Dark Brow			Till	Silty gravel with sand. Sand is is fine-to coarse-grained with v	s very fine- to coarse-grained. Gravel various lithologies.	-
6+	%29.99			20/40/40 (Lab)	Moist to Wet	Brow	n SM	0		fine- to coarse-grained with varounded.	very fine- to fine-grained, gravel is vious lithologies, subrounded to	<u>▼</u> 1592
8	1									Refusal on boulder at 8.0'. End of Boring - 8 feet		- 1590
-												- -
BAF		4700 Edina Tele) W 77 a, MN phone	55435	Suite 20 , 832-260					4.5-6' 5-gallon bucket	d: 1-2.5' plastic bag, 2.5-4.5' 5-gallon bu	icket,

Additional data may have been collected in the field which is not included on this log.

POLYMET LOG OF BORING 2008 2369B75.GPJ BARR JAN06.GDT 4/22/08

Client PolyMet Mining Corporation	Drill Contractor Boart Longyear	LOG OF Boring RS-17B DRAFT SHEET 1 OF 2
Project Name Polymet Overburden Characterization	Drill Method Rotasonic	DRAFI
Number <u>23/69-B75 INV</u>	Drilling Started _1/25/08 Ended _1/25/08	Elevation _1598.0
Location NorthMet Mine Site	Logged By MMB	Total Depth 12.0
SAMP. LENGTH & RECOVERY Matrix Effervescence Soil ph- ORP- Specific Cond. %GR/SA/ FINES Moisture	ASTM LITHOLOGY Stratigraphic Unit	TION ELEV.
-	OL/OH Soil See RS-17A, 0-1' interval for 0	-
2- %01-	SM	- - 1596 - - - - 1594
6	See RS-17A, 4.5-6' interval for of the second secon	description.
BARR Tengineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601	Gravel is angular to rounded v	id is very fine- to medium-grained.
Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601		d: 6.0-7.0' shelby tube, 8-11' 5-gallon bucket

	Project Name Polymet Overburden Characterization Number 23/69-B75 INV									Longyear	LOG OF Boring R DRAFT	S-17B ET 2 OF 2
-				urden Ci	naracteriz		ill Metho				DIVALI	
							illing Sta			8 Ended 1/25/08	Elevation 1598.0	
Locatio	n <u>No</u>	rthMet N	/line Site			Lo	gged By	MIV	/IB		Total Depth 12.0	
DEPTH FEET	SAMP. LENGTH & RECOVERY	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIP	TION	ELEV. FEET
-	100%			40/50/10 (Visual)	Wet	Brown	SP-SM		Upper Till	Sand with silt and gravel. San Gravel is angular to rounded w	d is very fine- to medium-grained. vith various lithologies.(continued)	-
-	\								Bed- rock	Troctolite bedrock, 0.8' long int	act core-shaped piece.	-
12 - - -	V .							> />		End of Boring - 12 feet		1586
14 - - -	_											1584 -
16 - - -	_											1582 -
18 - - - -												1580
Barr Engineering Co. 4700 W 77th St. Suite 200 Edina, MN 55435 Telephone: 952-832-2600 Fax: 952-862-2601											d: 6.0-7.0' shelby tube, 8-11' 5-gallon l	pucket

Additional data may have been collected in the field which is not included on this log.

POLYMET LOG OF BORING 2008 2369B75.GPJ BARR JAN06.GDT 4/22/08

	_				ng Corpo net Overb	ration ourden Ch	naracteriz				Boart otasoni		5-18A 1 OF 1
	Numbe										1/29/0	8 Ended 1/29/08 Elevation 1588.5	
	Locatio	_			Mine Site			Log	ged By	/ <u>MN</u>		Total Depth	
	DEPTH FEET	SAMP. LENGTH	& RECOVERY	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPTION	ELEV.
	_	Ĭ				20/60/20 (Visual)	Wet	Black	SM		Soil	Silty sand with gravel, organic rich.	
	-	-								ir Kila		Silt with possible low plasticity clay and approximately 10% gravel, mottled.	— 1588 –
	2-	- - -	100%			10/5/85 (Visual)	Moist	Yellowish Brown	ML				_
	-	V									Upper Till		— 1586 —
	-	_	%			30/50/20						Clayey sand with gravel, sand is fine-grained. Note: Geotechnical laboratory homogenized 0-5' interval. Grain size analysis indicates 26% gravel, 44% sand, and 30% silt and clay.	_
	4 -		100%			(Visual)	Moist	Brown	SC				_ 1584
	-	\ Y										Gravelly silty sand.	_
	6-	<u>-</u>	100%			32/47/21 (Lab)	Moist	Dark Gray to Black	SM		Lower Till		_ 1582
m	-	_	-			(Lub)		to Black			1		_
106.GDT 4/22/0	8-	V										Bedrock at 8.0'. Troctolite core pieces.	_
3PJ BARR JAN	-	-	100%								Bed- rock		— 1580 –
:008 2369B75.0	-												
RING												End of Boring - 10 feet	<u> </u>
POLYMET LOG OF BORING 2008 2389B75.GPJ BARR JAN06.GDT 4/22/08	BA	R	RF	470 Edi Tel	00 W 77 na, MN ephone	neering 7th St. 5 1 55435 e: 952- 862-26	Suite 2 : :832-26					Geotechnical samples: 0-5', 5-8'	

Client Poly Project Nam Number 2: Location N	ne <u>Polym</u>	et Overbu		naracteriz	ation Drill	I Contra I Metho ling Sta ged By	od Ro	otasoni 1/31/0	_	LOG OF Boring DRAFT SHI Elevation 1600.5 Total Depth 9.5	RS-19A EET 1 OF 1
PEET FEET SAMP.	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPT		ELEV. FEET
	808			Dry	Gray				Boulder		— 1600
2-	90%	1	13/47/40 (Lab)	Moist	10YR 4/4 Dark Yellowish Brown	SM			30% irregular gray mottles in m		- - 1598 -
4-			20/60/20 (Visual)	Moist	10YR 4/2 Dark Grayish Brown	SM		Upper Till	Silty sand with gravel, sand is fi has less than 5% reddish mottle	ine- to medium-grained. Mottled ares.	- 1596 -
ARR JAN06.GDT 4/22/08	%001		80/20/0 (Visual)	Dry	Various	GP			Gravel with sand, driller suspect gravel by drilling.	cts interval is cobbles broken into	- 1594 - - - - 1592
G 2008 2369B75.GPJ BJ								Bed- rock	Bedrock at 9.0'. Troctolite plug End of Boring - 9.5 feet	in core barrel.	_
POLYMET LOG OF BORING 2008 2389B75.GPJ BARR JAN06.GDT 4/22/08	470 Edir	r Engine 0 W 779 na, MN ephone: 952-8	th St. 3 55435	Suite 20					Geotechnical samples: 1-6'; She	elby tubes: 1.5-3.5'	

Client Project N					naracteriz		Ill Contractor Boart Longyear Ill Method Rotasonic LOG OF Boring I DRAFT							
Number	23/69)-B75 I	NV			Drill	ling Sta	arted	1/31/0	8 Ended _1/31/08	Elevation 1602.5			
Location	North	nMet M	line Site			Log	ged By	/ <u>MN</u>	1B		Total Depth _7.0			
DEPTH	& RECOVERY	Matrix Effervescence	Soil pH- ORP- Specific Cond.	%GR/SA/ FINES	Moisture	Matrix Color	ASTM	LITHOLOGY	Stratigraphic Unit	DESCRIPT		ELEV. FEET		
2-	100% 100%			10/60/30 (Visual)	MOIST	2.5Y 3/3 Dark Olive Brown	SM			Silty sand, sand is fine-grained		- 1602 - -		
4	100% 100%			25/42/33 (Lab) 29/41/30 (Lab)	Moist	2.5Y 4/2 Dark Grayish Brown	SM		Upper Till	Silty sand with gravel, fine- to coarse-grained gravel, boulders clay.	coarse-grained sand, fine- to s and cobbles. Possible low plasticity	- 1600 1598 		
8-	100%				Dry				Bed- rock	Bedrock at 6.5'. Troctolite piec	ees.	- - - - - 1594		
		Barı 470	r Engin 0 W 77 na MN	eering th St. \$	Co. Suite 20	00		Re	marks:	Geotechnical samples: 2-4.5', 4	.5-6'; Shelby tubes: 2-3'			

BARR Telephone: 952-832-2600 Fax: 952-862-2601

POLYMET LOG OF BORING 2008 2369B75.GPJ BARR JAN06.GDT 4/22/08

	_				Grain	Size	Di:	strib	ution	AS	T	M [)4	22			Ţ				lo. :	6	428
	Project: Po																_	_			ate:		5/08
Report	ted To: Ba	rr Enginee	ering Comp	oany														Re	epc	rt D	ate:	4/	6/08
	Location /	Boring No.	Sam	ple No.	Depth (ft)	Sample Type							Sc	oil Cla	ssificati	ion							
*		-01B		-0335	1-5	Bulk						C:			/Grav		r\						
•	K3-	OID	07-	-0333	1-3	Duik						31	ity 30	iiiu w	/ Glav	ei (Sivi	1)						
\diamond																							
· L	-																						
	Coa	Grav	el Fine	·	Coarse	Medi	San um	d	Fine	2					Н	ydron	neter Fine		nalys	Sis			
100			/4 3/8	#4	#10	#2	20	#40		100	#20	00											=
90	*	*									Ш						Ш						
		*																					
80			*																				
80																							
70					*						Ш												
60											Ш												
ssing								X			ш						H		H				
a 50																							
Percent Passing																							
<u>ء</u> 40										\downarrow													
30											N												
																			H				
20											Ш		\setminus										
20														*									
10																×							
10											Ш						*	4					
																	Н	-		\rightarrow	—		
0	50	20	10	5	2			.5	.2		_	.0.	5		.02				.00	15	<u> </u>	.002	
1	00		10			1	G	rain Si	ze (mm)	0	.1					0	.01						0.001
			Other Tests				Pe	rcent Pa	ssing														
		*	•	\Diamond	1	7	k	•		>	Ī				*		•		\Diamond				
Liqu	id Limit	NP			Mass (g) 2398	86.0) ₆₀									
Plas	tic Limit	NP			2	2" 92	.3)30									
Plastic	city Index	NP			1.5	5" 90	.5) ₁₀									
Water	Content	8.7				I" 87	.6						(C_{U}									
Dry De	nsity (pcf)				3/4	4 " 85	.9						(Cc									
Specif	ic Gravity	2.66*			3/8	81	.2					R	Rema	rks:									
Po	rosity				#	4 76	.1																
Organi	c Content				#1	0 70	.2																
	pН				#2		.6		\perp														
Shrink	age Limit				#4		.6																
	trometer				#10																		
	ı (psf)				#20	0 29	.3																
(* = a	ssumed)									_													
						Ē	OIL	MEE	RING													100	

					Grain S	Size	Distri	bution ASTM	D422	Job No. :	6428
	Project:	Polymet	t							Test Date:	4/5/08
Repo	rted To:	Barr Eng	gineerir	ng Company						Report Date:	4/6/08
	Location	n / Boring	g No.	Sample No.	Depth (ft)	Sample Type			Soil Classification		
Spec 1]	RS-01B		07-0335	1-5	Bulk			Silty Sand w/Gravel (SM	(i)	
Spec 2											
Spec 3											
							.1	I D.I.			
						Н	yarome	ter Data			
		Specir	men 1				Speci	men 2		Specimen 3	
Diar	neter (m	nm)	(% Passing		Diamete	er	% Passing	Diameter	% Pa	ssing
	0.031			18.9							
	0.020			15.1							
	0.012			11.1							
	0.009			8.5							
	0.006			6.3							
	0.003			3.9							
	0.001			2.0						I	

					Grair	Size	Dis	trib	utio	n <i>F</i>	\ST	Μ	D۷	122)					No		642	
	Project: Po																+_			Dat		4/10/0	
Report	ted To: Ba	rr Engine	ering Com	pany		0 1											<u> </u>	₹ер	ort	Dat	e:	4/14/0	80
	Location /	Boring No.	. Sam	ple No.	Depth (ft)	Sample Type								Soil Cl	assificatio	n							
*		G-10		-0400	3.5-5	Bag						C			Gravel (G		<i>I</i> 1)						
•	- Ko	-10	07	-0400	3.3-3	Dag						ال	andy	Jiity (Jiavei (G	101/ 510	1)						
\diamond					<u> </u>																		
Ľ																							_
	Coa	Grav arse	rel Fin	e	Coarse	Med	Sand ium	1	Fi	ine		+			Ну	drom/	eter <i>I</i> Fines		ysis				-
100	2		3/4 3/8	#4	#10	#	20	#40		#100	- 1	#200											
										\mp													1
90																							
,0										#													
0.0	*																						1
80	*	*																					}
70																							1
			*																				1
60				*																			
Percent Passing										\pm													1
S 50					*																		1
ent										+													1
Per 40]
40								\star		\pm													1
										+													
30																							1
										*													
20												\star											
										+			\rightarrow										1
10														*	*	- x							
										-						_	*-	*-	_	*-			1
0]
	00 50	20	10	5	2	1	G	s rain Siz	.2 ze (mm	1)	0.1		.05		.02	0.0	01		.005		.002	0.0	001
									(,													
	1		Other Tests		7			cent Pa	ssing							1							
		*	•	\Diamond	4	-	*	•		\Diamond	_				*	•)	<	>				
	id Limit	20.3			Mass		34.4				_			D ₆₀									
	tic Limit	16.0			4	2" 77					_			D ₃₀									
Plastic	city Index	4.3			1	.5" 76					_			D ₁₀									
Water	Content	10.4			_	1" 72	5							C_U									
Dry De	nsity (pcf)					/4" 69	.4							C_{C}									
Specif	ic Gravity	2.66*			3	/8" 64	.3				_			narks:									7
Po	rosity				_	#4 59	.5				_		All 3	8" gra	vel pass	ed 3.5	o" se	ive					
Organi	c Content				#	10 51	.5				_												
	рН				#	20 44	.1				_												
Shrink	age Limit				#	40 37	.9				_												
Pene	trometer				#1	00 25	.7																
	ı (psf)				#2	200 19	.3]
(* = a:	ssumed)																						
						5	OIL	MDD.		_													

					Grain S	Size	Distri	bution ASTM	D422	,	Job No. :	6428
	Project:	Polyme	t							T	est Date:	4/10/08
Repo	rted To:	Barr Eng	gineerir	ng Company						Rep	ort Date:	4/14/08
	Location	n / Boring	g No.	Sample No.	Depth (ft)	Sample Type			Soil Classification			
Spec 1 RS-10 07-0400 3.5-5 Bag Sandy Silty Gravel (GM/SM)												
Spec 1 RS-10 07-0400 3.5-5 Bag Sandy Silt Spec 2 Spec 2 Sandy Silt												
Spec 3												
						Н	/drome	ter Data				
							, a. o	tor Bata				
		Speci	men 1				Speci	men 2	,	Specin	nen 3	
Diar	neter (m	nm)		% Passing		Diamete	er	% Passing	Diameter		% Pas	sing
	0.031			12.2								
	0.020			10.7								
	0.012			8.4								
	0.009			6.9								
	0.006			6.0								
	0.003		•	4.8								
0.003 4.8 0.001 3.3												

									·	<u>~ T \</u>	1.5.40/							
	= ·				Grain	Siz	ze Di	stribut	ion A	SIN	Л D422	2			Job No		6428	
	Project: Po												\dashv		est Da		4/10/08	
Repor	rted To: Ba	arr Enginee	ring Compa	any		Sam	-20							Кер	ort Da	ıte:	4/14/08	}
	Location /	Boring No.	Sampl	le No.	Depth (ft)	Samp Typ					Soil C	Classification						
*		S-11	07-0)244	17-25	Вая			Grave	elly Sand	d w/Silt, me	dium to coars	se grair	ned (SI	P-SM)			
•		S-11	07-0		25-28	Bag					· ·	fine to mediu		,				
\Diamond		S-11	07-0		28-31	Bag						Silty Sand (SI						\neg
١.		Grave					San	nd		$\overline{}$			ometer	Anal	vsis			
	L	parse	Fine		Coarse	M	Medium		Fine	#204			Fine		The man			
100			4 3(8	#4	#10	_	#20	#40	#100	#200	0		$\overline{\Box}$	#		=		
	*													\pm				
90		****		111		_		1						\boxplus		_		
1		***	* #*				###	###	#	##			#	#		_		
80		***				_			\pm	\blacksquare				\pm				
				1			+		#	##			=	#		#		
70		+++				_	###	##	#	+			=	#		$\equiv \pm$		
l						_			4	\blacksquare			\blacksquare	\blacksquare				
60			 					+	##	+#			=	#		_		
			 	###	1	<u> </u>	###	##	#	##			=	#		=		
Percent Passing					X	<u></u>				\blacksquare			$\equiv \parallel$	\pm		\equiv		
ent I						<u> </u>								\pm				
Perc				+		\preceq				+#			#	#		_		
7 40						_		*	##				\blacksquare	\pm		\equiv		
l				\pm		<u> </u>	+			+			\blacksquare	\blacksquare		$\equiv \downarrow$		
30					##		$+ + \times$			##			=	#		#		
l		+ 111							<u> </u>	.			\equiv	拱		\equiv		
20						<u> </u>				1:4				\mp				
l								+	 	-			=	#		_		
10						_				1	`.	· \$.	$\equiv \parallel$	\pm		\equiv		
l						_		\Box	#	*	*		۵.					
0						_						****	×	*	*	<u>· · · +</u>	··•	
	100	20	10	5	2		1 G	Grain Size (1	,mm)	0.1	.05	.02	0.01).	005	.00.	0.00)1
1			Other Tests		7	_		ercent Passir	7	-								
l		*	•	\Diamond	<u> </u>	\vdash	*	•	\Diamond	4	_	*	•	\Diamond	_			
	uid Limit	NP	NP	NP	Mass (16585.9	12883.5	13443.7	4	D ₆₀	\vdash		<u> </u>	_			
	stic Limit	NP	NP	NP	1		95.0	97.8	92.3	4	D ₃₀			<u> </u>	_			
	ticity Index	NP	NP	NP	1.5		90.3	97.8	88.5	4	D ₁₀	\vdash		<u> </u>	_			
	er Content	9.9	13.7	7.1	+	_	85.3	96.9	85.9	4	C _U	\vdash		 	_			
	ensity (pcf)	2.((*	2.((*	2.//*	3/4		80.8	96.6	83.3	-	C _C			<u> </u>				
	ific Gravity	2.66*	2.66*	2.66*	3/8		72.1	88.8	73.7	-	Remarks	:						
	Porosity						65.2	77.0	65.8	-								
Organ	nic Content		- +				52.1	62.6 51.0	55.7 45.4	4								
Chrin	pH kage Limit						36.4 21.1	51.0 39.3	45.4 37.4	4								
SHILL	каде шпп	1		,	π~	+0	Z1.1	35.3	37. 4									

19.6

10.2

25.5

19.0

#100

#200

9.1

6.2

Penetrometer

Qu (psf)

(* = assumed)

Project: Polymer Tost Date: 4/10/08 Reported To Part Inspired property Reported To Part Inspired property Report Date: 4/10/08 Report Date: 4/10						Grain	Size	Di	stribut	ion A	STN	Л D4	122				.lc	ob No	· ·	642	 8
Report Date Art Augus Augus Report Date Art Augus Augus Report Date Art Augus Au	Р	roject: Po	olymet																		
Result	Report	ed To: Ba	ırr Enginee	ering Comp	oany											R					
RS-11		Location /	Boring No.	Samı	ole No.	Depth (ft)						9	Soil Clas	ssificatio	n						
No.	*																				
Sund	•																				
Coarse Fine Coarse Medium Fine Fines Fin	\Diamond						,						- <i>y</i> -	.,	(/						
100 90 80 70 60 100 90 20 100 5 2 1 Crain Size rum) 0.1 105 0.001 0.001 0.002 0.001 0.003 0.002 0.001 0.003	<u> </u>		Grave	el		•		San	d					Ну	dromet	er Aı	nalys	is			
90 80 70 60 91 10 00 90 100 9	100	Coa							#40		#20	0			Fi	nes					l
NP NP NP NP NP NP NP NP	100	***		74 3/8		#10			#40	#100	#40										
NP NP NP NP NP NP NP NP	90																				
Content Cont	90																				
Content Cont	80			Ċ.																	
10	00																				
10	70			Ž																	
Specific Gravity Porosity P	, 0			*																	
Specific Gravity Porosity P	60																				
20 10 10 50 20 10 50 20 10 5 2 1 6 7 10 10 10 5 2 1 6 7 10 10 10 10 10 10 10 10 10 10 10 10 10					<u> </u>																
20 10 10 50 20 10 50 20 10 5 2 1 6 7 10 10 10 5 2 1 6 7 10 10 10 10 10 10 10 10 10 10 10 10 10	Pass 20					· · · · · · · · · · · · · · · · · · ·															
20 10 10 50 20 10 50 20 10 5 2 1 6 7 10 10 10 5 2 1 6 7 10 10 10 10 10 10 10 10 10 10 10 10 10	cent					1															
20 10 10 50 20 10 50 20 10 5 2 1 6 7 10 10 10 5 2 1 6 7 10 10 10 10 10 10 10 10 10 10 10 10 10	غ ₄₀																				
20 10 10 50 20 10 5 2 1 6rain Size (mm) 10 10 5 2 1 6rain Size (mm) 10 10 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																					
Content Cont	30								1												
Content Cont																					
10	20																				
0 100 50 20 10 5 2 1 Grain Size (mm) 0.1 .05 .02 0.01 .005 .002 0.001 Other Tests											*										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10											<i>[]</i>	<i>*</i>								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													•	**	* ,	K					
Other Tests		50	20			1			5	2								*	000	<u>-</u>	
Liquid Limit NP NP Mass (g) 16975.9 410.9 D ₆₀ ★ ◆	10	00	20	10	3	2	1	G	Frain Size ((mm)	0.1	.03		.02	0.01	1	.00.	,	.00.	0.0	01
Liquid Limit NP NP Mass (g) 16975.9 410.9 D ₆₀ D ₉₀ Plastic Limit NP NP 96.3 D ₃₀ D ₃₀ D ₉₀ Plasticity Index NP NP 1.5" 89.3 100.0 D ₁₀ <		_		Other Tests				Pe	rcent Passi	ng											
Plastic Limit NP NP 2" 96.3 D ₃₀ D ₁₀ Plasticity Index NP NP 1.5" 89.3 100.0 D ₁₀ D ₁₀ Water Content 15.4 3.7 1" 84.3 94.8 C _U C _U Dry Density (pcf) 3/4" 80.0 83.5 C _C C _C Specific Gravity 2.66* 2.66* 3/8" 68.4 66.4 Remarks: Porosity #4 60.9 57.2 C C Organic Content #10 49.8 47.4 47.4 Arc.4				-	\Diamond					\Diamond			-	*	•		\Diamond				
Plasticity Index NP NP 1.5" 89.3 100.0 D ₁₀						-1	· —		410.9		_		ľ			+		_			
Water Content 15.4 3.7 1" 84.3 94.8 C _U Dry Density (pcf) 3/4" 80.0 83.5 C _C Specific Gravity 2.66* 2.66* 3/8" 68.4 66.4 Remarks: Porosity #4 60.9 57.2 57.2 Frame (Content) Frame (Content) #10 49.8 47.4							—		100.0		\dashv		ľ			-		-			
Dry Density (pcf) 3/4" 80.0 83.5 C _C Specific Gravity 2.66* 2.66* 3/8" 68.4 66.4 Remarks: Porosity #4 60.9 57.2 57.2 57.2 67.2		-									\dashv					+					
Specific Gravity 2.66* 2.66* 3/8" 68.4 66.4 Remarks: Porosity #4 60.9 57.2			10.1	0.7		_	-	-			\dashv		F			\dagger					
Organic Content #10 49.8 47.4			2.66*	2.66*									L								
							4 60	.9	57.2												
au #20 407 247	Organi	c Content				#1	0 49	.8	47.4		_										
	1	рН							36.7		_										
Shrinkage Limit #40 32.8 29.7							_				_										
Penetrometer #100 20.6 19.4						-					_										
Qu (psf) #200 14.5 14.1 (* = assumed)						#20	υ 14	.5	14.1												

			Grain S	Size	Distribution ASTM D422	Job No. :	6428
I	Project: Polyme	et				Test Date:	4/10/08
Repor	rted To: Barr Er	Report Date:	4/14/08				
	Location / Borin						
Spec 1	RS-11	07-0244	Gravelly Sand w/Silt, medium to coarse	grained (SP-SM)			
Spec 2	RS-11	Sand w/Silt and Gravel, fine to medium	grained (SP-SM)				
Spec 3	RS-11	07-0236	Gravelly Silty Sand (SM)			

Hydrometer Data

Speci	men 1	Spec	imen 2	Spec	imen 3
Diameter (mm)	% Passing	Diameter	% Passing	Diameter	% Passing
0.035	3.8	0.035	4.2	0.032	12.3
0.022	2.8	0.022	2.8	0.021	9.5
0.013	1.7	0.013	2.0	0.012	6.9
0.009	1.3	0.009	1.2	0.009	5.3
0.007	0.9	0.007	0.8	0.006	4.1
0.003	0.4	0.003	0.2	0.003	1.8
0.001	0.1	0.001	-0.1	0.001	0.7

			Grain S	Size	Distribution ASTM D422	Job No. :	6428
ı	Project: Polymet					Test Date:	4/10/08
Repor	ted To: Barr Engineer	ing Company				Report Date:	4/14/08
	Location / Boring No.	Sample No.	Depth (ft)	Sample Type	Soil Classification		
Spec 1	RS-11	07-0385	31-33	Bag	Gravelly Silty Sand (SM)	
Spec 2	RS-11	07-0370	9.5-10	Jar	Gravelly Silty Sand (SM)	
Spec 3							
				Н	vdrometer Data		

Hydrometer Data

Specii	men 1	Spec	imen 2	Spec	imen 3
Diameter (mm)	% Passing	Diameter	% Passing	Diameter	% Passing
0.033	8.7	0.033	7.7		
0.021	6.5	0.022	5.6		
0.013	4.7	0.013	4.7		
0.009	3.5	0.009	3.7		
0.006	2.5	0.006	3.0		
0.003	1.3	0.003	1.7		
0.001 0.2		0.001	0.6		

					Grain	Size	e Di	stribut	tion	AS	TM	D4	22				Job No). : <u> </u>	6428	}
	Project: Po																Test Da		4/10/08	3
Report	ted To: Ba	arr Enginee	ring Com	pany												Re	port Da	te:	4/14/08	3
	Location /	Boring No.	Sam	ple No.	Depth (ft)	Sample Type						S	oil Clas	sification	า					
*		5-12		7-0372	10-15	Bulk								Gravel						
•															, ,					_
\Diamond	KS	5-12	- 07	7-0378	5.5-10	Bulk						Silty S	ana w	'Gravel	(SM)					
L	P.																1 '			
	Coa	Grave arse	Fine	e	Coarse	Medi	Sar ium	nd	Fine					Нус	dromete Fii	er An nes	alysis			
100	1-1-1	1 3/	4 3/8	#4	#10		20	#40	#1(00	#200							\equiv	=	
	* *	.																		
90		X :																		
		1 1	····															_		
80			*																	
00					•••															
70				*																
70						•														
																		_		
60							.													
ssing											Ш									
4 50								X :.												
rcen																		_		
Percent Passing								$+ \parallel N$												
									\ <u>`.</u>											
30									*	\								_		
										/;										
20											*									
20												<u>``</u> .								
													`							
10														*	2.			_		
															*	*				
0	50	20		5	2			.5	.2	0.4		.05		.02	0.01		.005	.002	- ₩	2.4
1	00		10			1	(.5 Grain Size ((mm)	0.1	L				0.01	-			0.00)1
		(Other Tests	;			Pe	ercent Passi	ng											
		*	•	\Diamond		-	*	•	\Diamond					*	•		\Diamond			
Liqui	id Limit	NP	NP		Mass ((g) 2704	40.9	21277.9				[O ₆₀							
Plast	tic Limit	NP	NP			2" 95	.4	98.0				[O ₃₀							
Plastic	city Index	NP	NP		1.	5" 92	6	94.9					O ₁₀							
Water	Content	3.7	5.4		_	1" 89	.6	90.2					Cu							
Dry De	nsity (pcf)				3/	-	.4	87.8				(Cc							
Specif	ic Gravity	2.66*	2.66*		3/	80	.9	82.9				Rema			4					
Po	rosity				_ ;	#4 74	.0	78.3				All 3'	grave	el passe	ed 3.5"	seive	9			
Organi	c Content					10 67	.0	71.4												
	pН					20 58		62.2												
	age Limit			<u> </u>		40 49		52.7												
	trometer				#10			33.2												
Qu	ı (psf)			l	#20	00 20	.7	23.0	1			1								

(* = assumed)

				Grain S	Size	Distribution ASTM D422	Job No. :	6428
F	Project: Pol	lymet					Test Date:	4/10/08
Repor	rted To: Ba:	rr Engineeri	ng Company				Report Date:	4/14/08
	Location / E							
Spec 1	RS-	-12	07-0372	10-15	Bulk	Silty Sand w/Gravel (SM	<u> </u>	
Spec 2	RS-	-12	07-0378	5.5-10	Bulk	Silty Sand w/Gravel (SM	i)	
Spec 3								
					—	vdrometer Data		

Hydrometer	Data
------------	------

Specin	nen 1	Spec	men 2	Specimen 3					
Diameter (mm)	% Passing	Diameter	% Passing	Diameter	% Passing				
0.032	12.1	0.032	13.6						
0.021	0.021 8.0 0.021	0.021	10.0						
0.013	6.0	0.012	7.4						
0.009	3.9	0.009	5.4						
0.007	2.6	0.006	3.9						
0.003	1.1	0.003	1.6						
0.001	0.4	0.001	0.6						

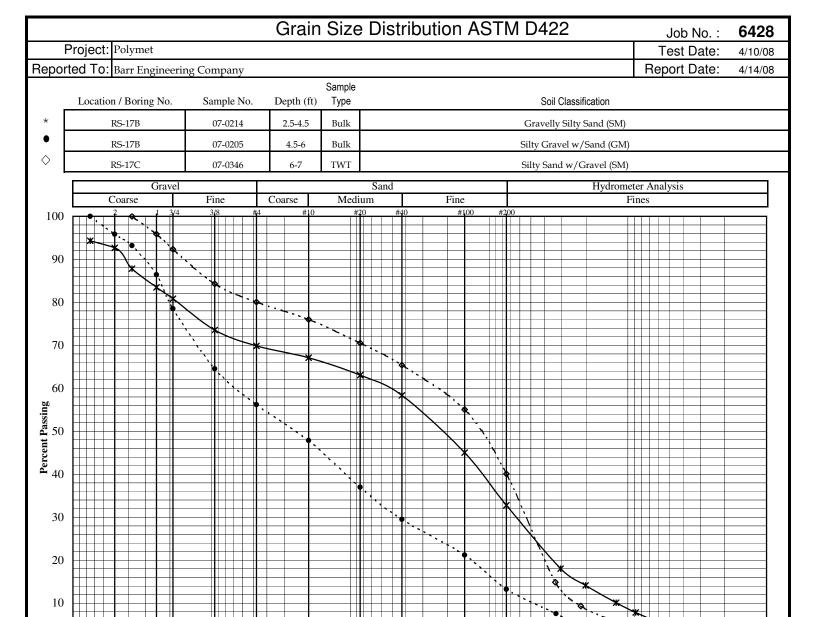
					Gra	in S	Size) D	istrib	utio	n <i>i</i>	AS	TI	ΜI	D4	-22						No.		6428	
	Project: Po																					Date		1/10/08	
Repor	ted To: Ba	rr Enginee	ering Com	pany															<u> </u>	₹ер	ort	Date	: 4	1/14/08	
	Location /	Boring No.	Sam	ple No.	Sample le No. Depth (ft) Type Soil Classification																				
*	RS-			-0394	2.5-6		Bag							(ilty San)						
•	- 110		0,	0071	2.5 0		Dug								J14.	cny o	nty our	u (01/1)	,						
\diamond \vdash						+																			
L		<u> </u>	1					Sand Hydroi											meter Analysis						
	Coa	Grave	Fine	e	Coarse		Med		na	F	ine						п		Fines		ysis				
100	<u> </u>	1 3	/4 3/8	#4	#	10	#	20	#40		#10	0	#20	00											
90																									
		×									4		+												
80		\rightarrow																							
00																									
70													Ш												
70																									
60											_		Ш												
ssing																									
Percent Passing											\pm		Ш												
rcen									\bigvee																
<u>ಷ</u> ₄₀													Н												
30											${\star}$		Ш												
											_		$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $												
20														\setminus					Н						
20																\									
																	<u>*</u>								
10																		*	*						
																				*_	$\overline{}$	*			
0	50	20		5		<u> </u>			.5	.2	!_).)5		.02				005	- 11	.002		
1	.00		10			=	1		Grain Si	ize (mn	n)	0.	1					0.	.01					0.001	
			Other Tests					F	ercent Pa	assing															
		*	•	\Diamond				*	•		\Diamond	T					*		•	<	>				
Liqu	ıid Limit	NP			Mas	ss (g)	106	18.6								D ₆₀									
Plas	tic Limit	NP				2"	89	.6							-	D ₃₀									
Plasti	city Index	NP				1.5"	86	.7								D ₁₀									
Wate	r Content	11.5				1"	81	.4								С									
Dry De	ensity (pcf)					3/4"	77	.6								C_{C}									
Specif	fic Gravity	2.66*				3/8"	70	.5						_1	Rem	arks:									
Po	orosity					#4	66	.5																	
Organ	ic Content					#10	58	.0																	
	pН				_	#20	49	.8				\Box													
Shrink	cage Limit				_	#40	42	.7				\Box													
Pene	etrometer					#100	31	.5				\Box													
	u (psf)					#200	25	.0						L											
(* = a	issumed)						_																		
	0001 D	want Awa	0 4 0		-		Ē	OII	INEE	אוסי.	\mathbf{C}					_	loomin								

					Grain S	Size	Distri	bution AS	TM E)422	Job No. :	6428		
	Project:	Polymet				Test Date:	4/10/08							
Repo	rted To:	Barr Eng	ineerin	Report Date:	4/14/08									
Location / Boring No.			Sample No.	Depth (ft)	Sample Type				Soil Classification					
Spec 1		RS-13		S-13 07-0394 2.5-6 Bag Gravelly Silty Sand (SM					Gravelly Silty Sand (SM)					
Spec 2														
Spec 3														
						Н	/drome	ter Data						
		Specin	nen 1				Speci	men 2			Specimen 3			
Diar	neter (m	ım)	Ç	% Passing		Diamete	er	% Passin	g	Diameter	% Pa	ssing		
	0.030			16.1										
	0.020			13.4										
	0.012			9.0										
	0.009			6.7										
	0.006			4.8										
	0.003			2.3										
	0.001			0.6										

					Grain	Size	. Di	stribut	ion	Δς	:TI	\/ Г)42	2				_	a b . N	la i	6428
F	Project: Po	olymet			Giani	J.20	וט ,			, ,,	- 1 1	L	- 12						ob N st D		4/10/08
			ring Compai	ny													R		ort D		4/14/08
	-	Boring No.	Sample		Depth (ft)	Sample Type							Soi	Classi	fication	ı					
*	RS-14A	/RS-14R	07-02	40	0-1.5	Bag				S	ilty (Grave!	w/Sa	nd an	d Orga	nic fin	es (C	GM)			
•		/RS-14R	07-02	32	3-5	Bag									/Sand		\	,			
\Diamond						Ü															
-	Coa	Grave	l Fine		Coarse	Medi	Sar um	nd	Fine	e					Hyd	lrome Fi	ter A	nalys	sis		
100		1 3/4	3/8	#4	#10	#2		#40	#	100	#2	00									
90																					
	1	``																			
80		<u> </u>																			
		``																			
70		* * *									Ш										
60				`																	
Percent Passing					•	<u>,</u>															
ant P						,,,															
Perce																					
- 40									\times												
30										<u> </u>											
											Ť										
20												, , ,	\setminus								
														*	.						
10													<u> </u>	. 7		*					
														``.	٠	• 7	۴.,	K			
0																••••	••••	٠.,		*	
1	.00	20	10	5	2	1	(.5 Grain Size ((mm)	0	.1	.0	5		.02	0.0	1	.00)5	.00	0.00
			Other Tests		7			ercent Passi			ī			_	1				_		
		*	•	\Diamond		-	k	•	<	>			_		*	•	-	\Diamond			
	id Limit	45.2	NP		Mass (g			12931.6					D _e				+				
	tic Limit	43.0	NP		2	-		98.2					D ₃				+		-		
	city Index	2.2	NP		1.5			89.2					D ₁				+				
	r Content	68.8	11.7		1			80.4					C				+		-		
	ensity (pcf)	2 55*	2.//*		3/4			75.5				г	С	_							
	fic Gravity	2.55*	2.66*		3/8 #			67.0 59.8					emar	KS:							
	orosity ic Content				#1			53.3													
	pH	 			#1			46.9													
	рп каде Limit	 			#2 #4			41.7													
	etrometer	 			#10			31.2													
	u (psf)	+			#10 #20			23.7													
	ussumed)				J #20			20.1	<u> </u>		I.	L									

			Grain S	Size	Distribution ASTM D422	Job No. :	6428					
Ī	Polymet					Test Date:	4/10/08					
Repor	ted To: Barr Engineeri	ng Company				Report Date:	4/14/08					
	Location / Boring No.	Sample No.	Depth (ft)	Sample Type	Soil Classification							
Spec 1	RS-14A/RS-14R	07-0240	0-1.5	Bag	Silty Gravel w/Sand and Organic	fines (GM)						
Spec 2	RS-14A/RS-14R	07-0232	3-5	Bag	Silty Gravel w/Sand (GM	1)						
Spec 3												
	Hydromotor Data											

Hydrometer	Data
------------	------


Specin	nen 1	Spec	imen 2	Specimen 3				
Diameter (mm)	% Passing	Diameter	% Passing	Diameter	% Passing			
0.033	16.5	0.033	8.8					
0.021	12.7	0.021	6.4					
0.013	9.2	0.013	4.1					
0.009	7.1	0.009	2.8					
0.006	5.7	0.007	2.0					
0.003	3.3	0.003	0.4					
0.001	1.1	0.001	-0.2					

					Grain	Size	Distr	ibutic	n As	STI	M D	422	-				b No. :		428
	Project: Po														1_		t Date:		/10/08
Repor	ted To: Ba	ırr Engine	ering Com	pany											F	lepoi	rt Date:	4	/14/08
	Location /	Boring No.	. Sam	ple No.	Depth (ft)	Sample Type						Soil Cl	assificat	ion					
*		G-15		-0355	0-0.5	Jar				Ç.	andy Si		ganic n		1 (MT.)				
•	RS	-13	07	-0333	0-0.5	Jai				30	ilidy 51	it w/ oi	gariic ii	iateria	i (IVIL)				
\Diamond					+ +														
Ľ	<u> </u>																		
	Coa	Grav	rel Fin	e	Coarse	Medi	Sand]	Fine				ŀ		neter A Fines	nalysi	.S		
100	2		3/4 3/8	#4	#10		20 #40		#100	#20	00								
					*														
90																			
, ,																			
80																			
80																			
70																			
60																			
Percent Passing										N									
sg 50										*									
cent										+									
a 40											$+ \lambda$								
40												\setminus							
•												X							
30																			
													*						
20														\ <u></u>					
10																*			
																	*		
0																			
	00	20	10	5	2	1	Grair	Size (mi	(n) (0.1	.05		.02	0	.01	.005	i	.002	0.001
			Other Tests				Dargan	t Passing											
		*	•	\Diamond	7	,		• assing	\Diamond	T			*		•	\Diamond	1		
Liqu	id Limit	NP			Mass (g	1) 10	4.4		<u> </u>	1		D ₆₀					1		
	tic Limit	NP			7	2"				1		D ₃₀					1		
Plasti	city Index	NP			1.5	-				1		D ₁₀							
	r Content	69.7			-	"				1		C _U							
	ensity (pcf)				3/4	,"				1		C _C							
	fic Gravity	2.55*			3/8	-	0.0			1	Re	marks:			<u> </u>		_		
	prosity				#					†									
	ic Content				#1	-				1									
	рН				#2					1									
	age Limit				- #4	-				†									
	trometer				#10	-				1									
	u (psf)				#20					1									
	ssumed)]	<u> </u>	J #20	<u> </u>				T	<u> </u>								
•						5	OII												
	9301 Br	vant Ave	South S	nite 107		E	OIL Ngine	EERIN	IG			Р	loomir	aton	Minne	esota	55420-3	436	

					Grain S	Size	Distri	bution ASTN	Л D422		Job No. :	6428
	Project:	Polymet	t							Т	est Date:	4/10/08
Repo	rted To:	Barr Eng	gineerir	ng Company						Rep	port Date:	4/14/08
	Location	n / Boring	g No.	Sample No.	Depth (ft)	Sample Type			Soil Classification			
Spec 1		RS-15		07-0355	0-0.5	Jar		Si	andy Silt w/organic materia	1 (ML)		
Spec 2												
Spec 3												
						Цv	/dromo	ter Data				
						1 13	, di Oille	lei Dala				
		Specir	men 1				Speci	men 2		Specir	men 3	
Diar	neter (m	ım)	(% Passing		Diamete	er	% Passing	Diameter		% Pas	ssing
	0.033			32.6								
	0.021			25.9								
	0.013			17.8								
	0.009			12.5								
	0.006			8.6								
	0.003			4.4								
	0.001			2.2								

					Grain	Size	Dist	ibuti	on .	AS	T۱	V [)4	22						No. :		428
	Project: Po																<u> </u>			Date:		10/08
Repor	ted To: Ba	rr Enginee	ring Comp	oany		•											F	{ep	ort L	Date:	4/	14/08
	Location /	Boring No.	Sam	ple No.	Depth (ft)	Sample Type							Sc	il Clas	ssificatio	n						
*	RS-			-0357	0-2	Jar									nd (SM							
•	K3-	-10	07-	-0337	0-2	Jai							3.	ity 3a	iia (Sivi	·)						
\diamond																						
, F																						
	Coa	Grave	el Fine	·	Coarse	Medi	Sand um		Fine						Ну	/drom	eter <i>A</i> Fines	Maly	/SIS			
100	2	1 3/	/4 3/8	##	#10	#2			#10	0	#20	00										_
											\blacksquare											
90																						
70											Ш											
00							$++\lambda$															
80																						
70																						
60									igorplus													
Percent Passing									\mathbf{H}													
Sa 50									$\downarrow \downarrow$													
ent										$\overline{}$	Н											
Per 40																						
40										\rightarrow	Ш											
											V											
30																						
20														V								
											#			\nearrow								
10															*	•						
											+						*_	w				
0																	ı,	_	/	*		
	100	20	10	5	2	1	.5 Grai	n Size (m	.2 m)	0.	1	.0:	5		.02	0.0	01	.0	005		.002	0.001
							0141	ii bize (ii	,	-												
		(Other Tests		_			nt Passing														
		*	•	\Diamond	4	7	٢	•	\Diamond					ļ	*	•	•	\Diamond				
Liqu	uid Limit	NP			Mass ().2							60			_					
Plas	stic Limit	NP			-	2"								30								
Plasti	icity Index	NP			1.	5"								10								
Wate	er Content	22.3			-	1"								\mathcal{L}_{U}								
Dry De	ensity (pcf)				3/	4"							(Cc								
Speci	fic Gravity	2.66*			3/	8" 10	0.0					R	lema	rks:								
Po	orosity				-	#4 99.	.6															
Organ	ic Content				#	10 98	.4															
	рН				#:	20 91	7															
Shrink	kage Limit				#4	40 80	.3]												
Pene	etrometer				#10	00 49	.5															
Q	u (psf)				#2	00 31	.2															
(* = a	assumed)					_				_												
	022: =	wont Ave				F	OIL NGINI	rpon	NC						omino						400	

					Grain S	Size	Distri	bution ASTN	Л D422	Job No	.: 64	128
	Project:	Polyme	t							Test Dat	e: 4/1	10/08
Repo	rted To:	Barr En	gineerir	ng Company						Report Dat	e: 4/1	14/08
	Location	n / Borin	g No.	Sample No.	Depth (ft)	Sample Type			Soil Classification			
Spec 1		RS-16		07-0357	0-2	Jar			Silty Sand (SM)			
Spec 2												
Spec 3												
						H	/drome	ter Data				
							aronno	tor Bata				
		Speci	men 1				Speci	men 2		Specimen 3		
Diar	neter (m	ım)		% Passing		Diamete	er	% Passing	Diameter	%	Passing	
	0.033			18.0								
	0.022			12.7								
	0.013			8.6								
	0.009			6.1								
	0.007			4.2								
	0.003			1.6								
	0.001			0.4								

Liquid Limit
Plastic Limit
Plasticity Index
Water Content
Dry Density (pcf)
Specific Gravity
Porosity
Organic Content
рН
Shrinkage Limit
Penetrometer
Qu (psf)

(* = assumed)

100

	Other Tests	1
*	•	\Diamond
16.2	NP	NP
15.5	NP	NP
0.7	NP	NP
13.4	10.2	17.3
2.66*	2.66*	2.66*

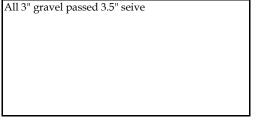
20

10

	Po	ercent Passii	ng
	*	•	\Diamond
Mass (g)	20077.4	15415.3	2836.4
2"	92.7	95.8	
1.5"	87.8	93.2	100.0
1"	83.5	86.4	95.9
3/4"	80.8	78.5	92.3
3/8"	73.5	64.5	84.3
#4	69.8	56.2	80.1
#10	67.1	47.9	76.0
#20	63.1	37.0	70.5
#40	58.4	29.5	65.4
#100	45.0	21.2	55.0
#200	32.8	13.2	40.1

Grain Size (mm)

0.1


2

*	•	\Diamond
	*	* •

0.01

Remarks:

.02

.005

.002

0.001

			Grain S	Size	Distribution ASTM D422	Job No. :	6428				
F	Project: Polymet					Test Date:	4/10/08				
Repor	rted To: Barr Engir	neering Company				Report Date:	4/14/08				
	Location / Boring N	No. Sample No.	Depth (ft)	Sample Type	Soil Classification						
Spec 1	RS-17B	07-0214	2.5-4.5	Bulk	Gravelly Silty Sand (SM))					
Spec 2	RS-17B	07-0205	4.5-6	Bulk	Silty Gravel w/Sand (GM	I)					
Spec 3	RS-17C	07-0346	6-7	TWT	Silty Sand w/Gravel (SM	(i)					
	Hydromotor Data										

Hydrometer	Data
------------	------

Specin	nen 1	Spec	imen 2	Spec	imen 3
Diameter (mm)	% Passing	Diameter	% Passing	Diameter	% Passing
0.031	18.1	0.033	7.6	0.033	14.9
0.020	14.2	0.022	4.5	0.022	9.3
0.012	10.1	0.013	3.0	0.013	5.9
0.009	7.9	0.009	2.3	0.009	4.0
0.006	6.0	0.007	1.8	0.007	3.2
0.003	4.0	0.004	1.2	0.003	1.8
0.001	1.5	0.001	0.5	0.001	0.4

					Orain	Ciar	- D:	-+-ibi	-1: O.D.	Λ C	<u>'T</u>	4 04	20		—				- 120	7
 	Duningti D	1			Grain	SIZE	וח ל	istribu	tion	AS	וול	<u>/I U4</u>	22				Job N		6428	4
	Project: Po														+		est Da		4/10/08	4
Керог	[ес го. ра	ırr Enginee	ering Compan	ny		Sample										Kep	ort Da	ite.	4/14/08	4
_	Location /	Boring No.	. Sample	e No.	Depth (ft)							S	oil Clas	sification	_					
*	RS	S-18			5-8	Bulk						Grav	elly Silt	y Sand (Sl	M)					ال
•	RS	S-18			0-5	Bulk	<u> </u>				Silt	ty Clayey	/ Sand v	w/Gravel	(SC-SI	M)				
					!	<u> </u>	<u> </u>													_
	Co	Grave		$\overline{+}$	~	Mad	San	ıd	Ein		耳			Hydr	ometer		ysis			
100	Coa		Fine 3/4 3/8	#4	Coarse #10	Medi #2	#20	#40	Fine #1	e #100	#200	00			Fine	ès		<u> </u>		
100		1	<u> </u>		++		##	###	#	\vdash	#		+			#	$\exists \exists$	\dashv		
90	*	•.			#	-	##	##	==	\blacksquare	#		\pm	#	#	#				
, ,		* + '	<u> </u>		#	_	##	##	=	F	1	$\exists \pm$	-	1		#	\boxplus	<u> </u>		
90		+ 1/2/		##	##	_#	###	##	#	#	##		#	#	#	#	##	H		
80		1			1	-	#	#	=	\blacksquare	#	\oplus	丰	#	\blacksquare	#	\boxplus	\blacksquare		
		###			\mp	$\equiv \sharp$	##	$\blacksquare +$	#	H	#	$\exists \exists$	\equiv	\equiv	$\equiv \parallel \parallel$	$\exists \pm$	\boxplus	\equiv		-
70		++++*		**		_#	###	##	#	\models	##	\parallel	_	#	#	#	#	丰		
İ		+++	 				###	##		H	+		#	#_	#	#	#	$\overline{}$		
60					=			#	=='	尸	#		丰	#	#	#	\blacksquare			
Percent Passing					$\exists +$	=	###	 	===	F	1		=	\equiv	$\equiv \parallel \parallel$	$\exists \pm$	\boxplus	=		
Se 50		+++ +*			##		**	1.	#	ightharpoons	#	\parallel	#	#	#	#	##	丰		
:sent		+++			++		#	#		<u> </u>	#		#	#	#	#	##	\Box		
Per 40		++++			王	=	毌				₩		丰	Ŧ	\blacksquare	#	\boxplus	\blacksquare		
70		##			\mp	$\equiv \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	##	\pm	<u></u> ,		#	$\blacksquare \Box$	=	=	$\equiv \boxplus$	\equiv	\boxplus	\equiv	\equiv	
20					#	_#	###	##	\neq		1		+		#	#	##	#		
30		++++	###		##	#	###	###	====	\leftarrow			#	+	#	#	##	#		
İ		+				-	#	##	#		\blacksquare		æ	#	\boxplus	#	\boxplus	+		
20		###			#	=#	\mathbb{H}	\blacksquare	7				•	• 1	$\exists \exists \exists$	#	\boxplus	\Box		
İ		++++*			##	#	###	##	#	\vdash	##		*	*		#	##	丰		
10		++++-	 		#	#	##	##	<u></u>		+	+	#	*_	***		##	+		
İ		###			#	=			=='		\blacksquare		=			*		•		
0		<u></u>					Ш			\perp	Ш		<u></u>	<u> </u>			Ш			
1	100	20	10	5	2	1	(Grain Size	(mm)	0.	.1	.05		.02	0.01		.005	.00	0.001	_
			Other Tests				P	ercent Pass	sing		_					_				
İ	ļ	*	•	\Diamond	i	-	*	•	<	>			L	*	•	<	>			
	uid Limit	NP	23.1		Mass (086.5	19537.0	\perp		1		D ₆₀			<u> </u>	_			
	stic Limit	NP	17.1		i	2" 91		93.4	\downarrow		1		D ₃₀			<u> </u>				
	ticity Index	NP	6.0		1	.5" 87		90.0			1		D ₁₀			<u> </u>				
	er Content	21.5	25.4			1" 82		88.1			1		Cu			<u> </u>	\Box			
	ensity (pcf)	<u></u> '			1	80		85.9			1		Cc	L						
Specif	ific Gravity	2.66*	2.66*		3/	/8" 75	.4	80.9				Rema								
Pr	orosity	1 '	1	I	1	#4 68	3.4	73.9	Î	J	ĺ	All 3"	' grave	el passed	i 3.5" s	eive				

Organic Content рΗ Shrinkage Limit Penetrometer Qu (psf)

	Other Tests	;
*	•	\Diamond
NP	23.1	
NP	17.1	
NP	6.0	
21.5	25.4	
2.66*	2.66*	

	Po	ercent Passii	ng
	*	•	\Diamond
Mass (g)	27086.5	19537.0	
2"	91.7	93.4	
1.5"	87.2	90.0	
1"	82.2	88.1	
3/4"	80.1	85.9	
3/8"	75.4	80.9	
#4	68.4	73.9	
#10	62.3	67.1	
#20	52.4	58.3	
#40	42.3	51.5	
#100	28.1	38.1	
#200	21.3	29.8	

				Grain S	Size	Distribution ASTM D422	Job No. :	6428				
F	Project:	Polymet					Test Date:	4/10/08				
Repor	ted To:	Barr Engineerir	ng Company				Report Date:	4/14/08				
	Location	/ Boring No.	Sample No.	Depth (ft)	Sample Type	Soil Classification						
Spec 1]	RS-18		5-8	Bulk	Gravelly Silty Sand (SM)						
Spec 2												
Spec 3												
					Ц	udrometer Data						

Н١	vdromete	er Data
111	yui oiii c te	zı Dala

Specin	nen 1	Spec	imen 2	Specimen 3				
Diameter (mm)	% Passing	Diameter	% Passing	Diameter	% Passing			
0.030	14.5	0.030	20.6					
0.020	12.0	0.020	16.7					
0.012	9.6	0.012	13.1					
0.009	8.1	0.009	10.2					
0.006	6.8	0.006	7.7					
0.003	5.2	0.003	4.8					
0.001	3.7	0.001	2.5					

					Grain	Size	Di :	istribut	ion	<u>AS</u>	ГМ	D۷	122				J	lob N	lo. :	64	128
	Project: Po																	est Da		4/1	0/08
Report	ted To: Ba	arr Engine	ering Com	pany												R	lepo	ort Da	ate:	4/1	4/08
_	Location /	Boring No.	. Sam	ple No.	Depth (ft)	Sample Type						(Soil Cla	ssificatio	n						
*	RS	5-19	07	7-0342	1.5-3.5	TWT					Silt	y San	d w/a	little gra	avel (Sl	M)					
•	RS	5-19	07	7-0382	1-6	Bulk					Silty	Sano	l w/G	ravel (SM	1/SC-S	SM)					
	Coa	Grav	el Fine	$\overline{\Box}$	Coarse	Medi	Sar	nd	Fine					Ну	drome	ter A	naly	sis			7
100	2	# 1 2	3/4 3/8		#10	#2		#40		00	#200	_			1.	mes		_			-
		*	*					+			#							#			=
90	1	•.																			
				*														\pm			4
80					*																
					· · · · · ·						Ш					Ш					
70											\blacksquare					Н		#			=
						```												$\equiv$			3
60							<b>.</b>											$\pm$			
Percent Passing								<b>+</b>	$\wedge$	,								#			=
<b>Pag</b> 50								#,										#			7
cent									,,,	$\overline{}$											$\exists$
ь 40									Ė	·	$\bigvee$										
10										``,	$\Lambda$					Ш		#			_
30											•	$\forall$						#			7
30												./						=			$\exists$
20													$\searrow$					_			4
20											$\blacksquare$			Ж.		Ш		#			4
															<b>`</b>	Ш					3
10															_	*	•.	-			
																- 7	*		*		4
0	00	20	10	5	2	1		.5 Grain Size (	.2	0.1		.05		.02	0.0	1	.00	05	.0	002	0.001
1			10			1		-rain Size (	(mm)	0.1					0.0	1					J.001
		*	Other Tests	\$	٦	4		ercent Passin	ng	$\overline{}$				*	•		$\Diamond$	$\neg$			
Liau	id Limit	19.1	19.7		Mass (	-		22002.7					D ₆₀			+					
	tic Limit	17.8	16.1		_	2"		94.9					D ₃₀			1					
Plastic	city Index	1.3	3.6		1.	5" 100	0.0	91.8					D ₁₀								
Water	r Content	7.6	3.9		_	1" 96.	.2	89.2					C _U								
Dry De	ensity (pcf)				3/	4" 94.	.7	88.0					$C_{C}$								
Specif	ic Gravity	2.66*	2.67*		3/	8" 90.	.5	83.6				Ren	narks:								
Po	rosity				1	#4 87.	.0	77.6													
	c Content				_	10 81.		69.2													
	pН					20 75.		60.0													
Shrink	age Limit					40 69.		53.8													
Pene	trometer				#10			41.5													
Qι	ı (psf)			ĺ	#20	00 40.	.0	32.6													

			Grain S	Size	Distribution ASTM D422	Job No. :	6428				
F	Project: Polymet					Test Date:	4/10/08				
Repor	Reported To: Barr Engineering Company										
	Location / Boring No.	Sample No.	Depth (ft)	Sample Type	Soil Classification						
Spec 1         RS-19         07-0342         1.5-3.5         TWT         Silty Sand w/a little gravel (SM)											
Spec 2	RS-19	07-0382	1-6	Bulk	Silty Sand w/Gravel (SM/SC	-SM)					
Spec 3											
				H	vdrometer Data						

Н١	drometer	Data
יח	varonneter	Dala

Specir	men 1	Spec	imen 2	Specimen 3		
Diameter (mm)	% Passing	Diameter	% Passing	Diameter	% Passing	
0.032	21.4	0.030	20.7			
0.021	17.3	0.020	17.3			
0.012	12.1	0.012	13.3			
0.009	8.5	0.009	10.9			
0.006	6.3	0.006	9.1			
0.003	2.7	0.003	6.2			
0.001	0.7	0.001	3.8			

					Grain	Cizo F	Distribut	ion AS	TN/	D422	ı				0400
г	Project:	D-1			Giaiii	SIZE L	JiSti ibui	.1011 AC	ואווכ	D422	1			Job No. :	6428
														est Date:	4/10/08
nepor	tea ro.	Barr Engine	ering Compa	iny		Sample							ne	oort Date:	4/14/08
	Location	/ Boring No.	. Sampl	le No.		Туре				Soil Cla	assification	า			
*	]	RS-20	07-0	)345	2-3	TWT				Silty Sand	w/gravel	(SM)			
•		RS-20	07-0		2-4.5	Bulk				Silty Sand					
$\Diamond$										,	78 -	( )			
		Grav	/el	$\overline{}$	l l		Sand				Hva	dromete	er Ana	lvsis	
	C	oarse	Fine	士	Coarse	Medium		Fine			11)(	Fir			
100		3	3/4 3/8	#4	#10	#20	#40	#100	#200				Ш		
		•,											Ш		
90	, S														
		* *:													
80			· · · · · · · · · · · · · · · · · · ·												
			1.												
70															
					*										
60					,,,										
						<u>```</u> \	$\mathbb{N}$								
assi						11-4							Н		
Percent Passing							<b>                                     </b>	$\mathbf{x}$							
- 40								`.,`					Н		
								,,,	. *						
30									[ <b>†</b> • • •						
										1					
20										×.					
											×	· • .			
10												*			
													*	* <u>*</u> •	
0													ш		
1	.00	) 20	10	5	2	1	Grain Size	( <b>mm</b> ) 0	.1	.05	.02	0.01		.005	0.001
			Other Tests				Percent Passi	ng							
		*	•	$\Diamond$		*	•	$\Diamond$			*	•	<	$\Rightarrow$	
Liqu	ıid Limit	NP	15.5		Mass (g	3120.4	18390.9			D ₆₀					
Plas	tic Limit	NP	15.4		2	90.6	98.2			D ₃₀					
Plasti	city Index	NP	0.1		1.5	87.3	94.8			D ₁₀					
Wate	r Content	3.7	10.4		1	87.3	89.3			$C_U$					
Dry De	ensity (pcf)				3/4	85.2	85.4			$C_{C}$					
Specif	fic Gravity	2.66*	2.66*		3/8	80.9	77.6		ļ ,	Remarks:					
	orosity		$\vdash$		#4		71.1								
	ic Content				#10		63.5								
	рН		$\longmapsto$		#20		53.8								
	age Limit		$\longmapsto$		#40		47.1								
	etrometer		$\vdash$		#100		36.1								
Qı	u (psf)		<u> </u>		#200	33.1	29.7		l L						

				Grain S	Size	Distribution ASTM D422	Job No. :	6428
!	Project: I	Polymet					Test Date:	4/10/08
Repor	ted To: I	Barr Engineerir	ng Company				Report Date:	4/14/08
	Location	/ Boring No.	Sample No.	Depth (ft)	Sample Type	Soil Classification		
Spec 1	F	RS-20	07-0345	2-3	TWT	Silty Sand w/gravel (SM	)	
Spec 2	ŀ	RS-20	07-0377	2-4.5	Bulk	Silty Sand w/gravel (SM	I)	
Spec 3								
					H	ydrometer Data		

Hydrometer	Data
------------	------

Speci	men 1	Spec	imen 2	Spec	imen 3
Diameter (mm)	% Passing	Diameter	% Passing	Diameter	% Passing
0.031	18.9	0.027	19.8		
0.020	14.8	0.018	17.1		
0.012	10.7	0.011	13.2		
0.009	8.0	0.008	10.5		
0.006	6.2	0.006	8.6		
0.003	3.8	0.003	4.7		
0.001	1.5	0.001	2.8		

					Grain	Size	Dis	stribut	ion A	AST	ΜC	)42	2		1			No.:	642	
	Project: Po														-   -			Date:	4/5/0	
Repor	ted To: Ba	ırr Enginee	ering Comp	oany		Sample										Rep	ort I	Date:	4/6/0	80
	Location /	Boring No.	Sam	ple No.	Depth (ft)	Type						Soil (	Classific	ation						
*		3-03		-0336	10-15	Bulk					Sandy		/a little		(ML)					
•			0.	0000	10 10	Duik					ourid	one	, a mar	Braver	(1112)					
$\Diamond$																				
Ļ		<u> </u>	1				0	1			1			TT 1		A 1				_
	Coa	Grave arse	ei Fine		Coarse	Medi	San um	<u>a</u>	Fine					Hydro	Fine		ysis			1
100	<b>*</b>		/4 3/8	#4	#10	#2		#40	#100	) #	200									7
	*	* *	,																	
90																				
				*																
90					*															
80																				
								$\star$												
70																				
									*											
60										$\overline{}$										
ing											*									
sse 50											$\mathbb{N}$									
Percent Passing											$\perp \setminus$									
Perc											#									1
<b>-</b> 40												$\overline{}$								
													*							
30																				
														$\overline{}$						
20														<b>*</b>	$\langle   $					
															X					
10																×				
10																		*		
0																			<u>*</u>	
0	.00	20	10	5	2	1	-	.5 rain Size (	.2	0.1	.0:	5	.02	-	0.01		005	.(	002	.001
1	.00		10			1	G	rain Size (	mm)	0.1					J.U1				0.	.001
			Other Tests				Pe	rcent Passi	ng											
		*	•	$\Diamond$		4	٢	•	$\Diamond$				4		•	<	>			
Liqu	uid Limit	16.9			Mass (	g) 2496	54.0					D ₆₀								
Plas	tic Limit	14.3				2" 97.	.8					D ₃₀								
Plasti	city Index	2.6			1.	5" 96.	.8					D ₁₀								
Wate	r Content	11.3				1" 94.	.9					$C_{U}$								
Dry De	ensity (pcf)				3/	<b>4"</b> 93.	.8					$C_{C}$								
Speci	fic Gravity	2.66*			3/	<b>8"</b> 90.	.6				R	emark	s:							
Po	orosity					<b>#4</b> 87.	.6													
Organ	ic Content				#	10 83.	.0													
	рН				#:	20 78.	.1			$\neg$										
	kage Limit				#-	10 74.	.0			$\Box$										
	etrometer				#1	00 65.	.9			$\Box$										
Q	u (psf)				#2	-														
	ssumed)				<u> </u>															
						5	OIL	NEER												
	0201 P		041- 0	. 105	,	E	NGI	NEEB	ING				DI		N 40			400 04	00	

				Grain S	Size	Distri	bution ASTN	Л D422	Job No. :	6428
	Project: Po	olymet							Test Date:	4/5/08
Repoi	rted To: Ba	arr Engineerii	ng Company						Report Date:	4/6/08
	Location /	Boring No.	Sample No.	Depth (ft)	Sample Type			Soil Classification		
Spec 1	RS	S-03	07-0336	10-15	Bulk			Sandy Silt w/a little gravel (	(ML)	
Spec 2										
Spec 3										
					Hy	ydrome	ter Data			
	S	Specimen 1				Speci	men 2		Specimen 3	
Diar	neter (mm		% Passing		Diamete		% Passing	Diameter	% Pas	ssing
	0.030		33.0							
	0.019		27.8							
	0.012		21.4							
	0.009		16.7							
	0.006		12.3							
	0.003		6.3							
	0.001		2.7							

Project   Vulymet							<u> </u>	_		· · ·	<del></del> -	<del></del>	100							
Report Date:   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800   A 800		<del>- · .  -</del>				Grain	Size	<u> </u>	stribut	ion A	<u>S11</u>	VI L	)422		ı					
Name																				
RS-04	Repor	ted 10: Ba	ırr Enginee	ering Compa	any		Cample	—							<u> </u>	Нe	port i	Date:	4/6/0	)8
No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.   No.		Location /	Boring No	. Sampl	le No.	Depth (ft)							Soil Cl	assificatio	on					
RS-04	*	RS	5-04	07-0	)209	10-15	Bulk					Sil	ty Sand	w/Grave	el (SM)					
Sand	•	RS	5-04	07-0	0203	15-20	Bulk													
Course   Fine   Course   Medium   Fine   Fines   Fines	$\Diamond$																			
Coarse   Fine   Coarse   Medium   Fine   Pines   Fines		Grav	/el	$\equiv$				nd		$\equiv$			Ну	dromet	er Ana	alysis			$\overline{1}$	
NP	100								#40		#20	00								l l
90	100	**		1/4 340	##	#40	, n		#40	#100	#40	)0		$\pm$				$\blacksquare$		7
NP   NP   NP   NP   NP   NP   NP   NP			***	*.				$\blacksquare$			$\blacksquare$					$\blacksquare$				]
A	90		###		###	##		##	###	#	##	$\blacksquare$	$\perp$	_		+		+		╡
April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   April   Apri											#					$\coprod$				1
00	80		$\pm \pm \pm$					$\mathbb{H}$	1	#	$\exists \pm \pm$	$\mathbb{H}$						1		]
00			###	1				##	###		##	$\pm \pm$		_		##		$\pm \pm$		╡
Security   Content Content   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   D	70					**		▦			$\blacksquare$	oxdot				Ш				]
Security   Content Content   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   D			$\pm \pm \pm$			##	Z::	$\mathbb{H}$	$\blacksquare \blacksquare$		$\exists \exists $					$\blacksquare$		$\exists$		]
Security   Content Content   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   Dry Density (pd)   D			###	1	##	##														
30 20 100 50 20 100 50 20 100 5 2 1 6 7 8 8 8 8 8 8 8 8 8 8 9 8 8 8 8 8 8 8 8	ing		+++				$= \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm$											7		
30 20 100 50 20 100 50 20 100 5 2 1 6 7 8 8 8 8 8 8 8 8 8 8 9 8 8 8 8 8 8 8 8	Passi 20		$\mp$			##												]		
30 20 10 10 50 20 10 5 2 1 6 7 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ent I		$\pm$	# ##	##			#	<b>*</b>	#	#	$\boxplus$	#	#		##		##		
30 20 10 10 50 20 10 5 2 1 6 7 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Perc		###	1	###	++	=	##	#1/-		##	$\exists \exists$	#	=		##		##		1
20 10 10 5 2 1 6 7 10 10 5 2 1 6 7 10 10 10 5 2 1 6 7 10 10 10 5 2 1 6 7 10 10 10 10 10 10 10 10 10 10 10 10 10	40							$\coprod$												]
20 10 10 5 2 1 6 7 10 10 5 2 1 6 7 10 10 10 5 2 1 6 7 10 10 10 5 2 1 6 7 10 10 10 10 10 10 10 10 10 10 10 10 10	•		$\pm$			+	=	$\parallel \parallel$		<del>\</del>	##	$\blacksquare$	#	_		+		$\pm$		
10	30		###	<del>                                     </del>	###			##	###	X:	-##	$\pm$	=	=		+		$\pm$		
10																				]
0 100 50 20 10 5 2 1 6 7 ain Size (mm) 0.1 05 .02 0.01 .005 .002 0.001    Content Tests	20		$\pm \pm \pm$	# ##	+	##		$\parallel \parallel$	_##			<u>```</u>		_		+		$\pm \pm$		
0 100 50 20 10 5 2 1 6 7 ain Size (mm) 0.1 05 .02 0.01 .005 .002 0.001    Content Tests			+++	# ##		#		##	###		##	$\blacksquare$	*			##		##		
0 100 50 20 10 5 2 1 6 5 an Size (mm) 0.1 05 02 0.01 005 002 0.001    Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests   Comparison of the Tests	10						$\exists \exists$	$oxed{\mathbb{H}}$			$\blacksquare$	H	$\equiv$	**::		$oxed{\mathbb{H}}$		$\equiv$		]
0 100 50 20 10 5 2 1 Grain Size (mm) 0.1 .05 .02 0.01 .005 .002 0.001    Cother Tests			+				$= \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm \pm$	$\parallel \parallel$			+	#		_	***	*	-	<b>W</b>		
Other Tests    Percent Passing	0							Ш				ш							*	╛╽
Liquid Limit         NP         NP         Mass (g)         32700.0         30183.0         D ₆₀ ★         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆         ◆		100		10			1		Grain Size (	( <b>mm</b> )	0.1	.03		.02	0.01		.005	.υ	0.0	001
Liquid Limit         NP         NP         Mass (g)         32700.0         30183.0         D ₆₀ D           Plastic Limit         NP         NP         Plastic Limit         NP         NP         NP         D ₃₀ D           Plasticity Index         NP         NP         NP         NP         NP         D ₃₀ D           Water Content         10.9         13.5         1"         94.1         94.7         C _U C _U Dry Density (pcf)         3/4"         92.2         92.7         C _C C _C Specific Gravity         2.66*         2.66*         3/8"         87.0         87.9         Remarks:           Porosity         #4         80.8         82.0         All 3" gravel passed 3.5" seive           Organic Content         #10         71.1         73.0         All 3" gravel passed 3.5" seive						1					7				1 _	1				
Plastic Limit         NP         NP         2"         96.8         98.2         D ₃₀ D           Plasticity Index         NP         NP         1.5"         95.6         97.1         D ₁₀ D           Water Content         10.9         13.5         1"         94.1         94.7         C _U C _U C _U Dry Density (pcf)         3/4"         92.2         92.7         C _C C _C C _C Specific Gravity         2.66*         2.66*         3/8"         87.0         87.9         Remarks:           Porosity         #4         80.8         82.0         All 3" gravel passed 3.5" seive           Organic Content         #10         71.1         73.0         All 3" gravel passed 3.5" seive				<del>                                     </del>	$\Diamond$					$\Diamond$	4		2	*	•	+	$\stackrel{\diamond}{-}$			
Plasticity Index         NP         NP         1.5"         95.6         97.1         D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ D ₁₀ <				<del>1                                    </del>						<del> </del>	4			-		+	$\dashv$			
Water Content         10.9         13.5         1"         94.1         94.7         C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U C _U				t		1				<del> </del>	4			-		+	$\dashv$			
Dry Density (pcf)         3/4"         92.2         92.7         C _C Specific Gravity         2.66*         2.66*         3/8"         87.0         87.9         Remarks:           Porosity         #4         80.8         82.0         All 3" gravel passed 3.5" seive           Organic Content pH         #20         59.4         61.7         61.7						1				<del> </del>	4			-		+	$\dashv$			
Specific Gravity         2.66*         2.66*         3/8"         87.0         87.9         Remarks:           Porosity         #4         80.8         82.0         All 3" gravel passed 3.5" seive           Organic Content pH         #10         71.1         73.0         73.0           #20         59.4         61.7         61.7			10.9	13.5		-	_		1	<del> </del>	4			-	1	+	-			
Porosity #4 80.8 82.0 All 3" gravel passed 3.5" seive  Organic Content pH #20 59.4 61.7			2.66*	266*		1				<del>                                     </del>	4	D								
Organic Content #10 71.1 73.0 pH #20 59.4 61.7			2.00	2.00"		1			1	<del>                                     </del>	$\dashv$				sed 3.5"	seive	<u>,</u>			٦
pH #20 59.4 61.7			<del></del>	<del>                                     </del>		-1			1	<del>                                     </del>	$\dashv$	Ī	100	V 62 F	, ca = .	002				
			<del></del>	<del>                                     </del>		1				<del>                                     </del>	+									
						1				<del></del>	+									



22.7

#100

#200

29.0

21.0

Penetrometer

Qu (psf)

			(	Grain S	Size [	Distri	bution	ASTM	D422	Job No. :	6428
I	Project: Pol	ymet								Test Date:	4/5/08
Repor	ted To: Bar	r Engineerir	ng Company							Report Date:	4/6/08
	Location / B	Boring No.	Sample No.	Depth (ft)	Sample Type				Soil Classification		
Spec 1	RS-(	04	07-0209	10-15	Bulk				Silty Sand w/Gravel (SM	I)	
Spec 2	RS-(	04	07-0203	15-20	Bulk				Silty Sand w/Gravel (SM	()	
Spec 3											
					Ну	drome	ter Data				
	Sp	oecimen 1				Speci	men 2			Specimen 3	
Dian	neter (mm)	)	% Passing		Diamete	er	% F	Passing	Diameter	% Pas	ssing
	0.032		14.0		0.032			14.9			

8.8

6.7

5.3

2.9

1.4

0.021

0.012

0.009

0.006

0.003

0.001

0.021

0.012

0.009

0.006

0.003

0.001

11.2

8.0

6.5

4.8

3.0

1.7

					Grain	Sizo	Dic	tribut	ion /	NT2	<u>//                                   </u>	1122						C 41	
	Project: P	Palamot			Glaili	SIZE	סוט	liibui	1011 /	1011	VI L	1422		1			No.:	642	
		Barr Engine	orina Cam											-			Date: Date:	4/5/0	
пероп	.eu 10. _{[B}	arr Enginee	ering Com	parry		Sample									110	port	Jaie.	4/6/0	00
_	Location	/ Boring No.	. Sam	ple No.	Depth (ft)	Туре						Soil Cla	ssification						
*	RS	6-05A	07	7-0231	10-11.5	Bag					Silt	y Gravel	w/sand (	(GM)					
•	RS	6-05A	07	7-0246	11.5-13	Bag					Silt	y Gravel	w/sand (	(GM)					
$\Diamond$	RS	6-05A	07	7-0215	6-11.5	Bulk					Silt	y Sand w	v/Gravel (	(SM)					
_		Grav	el				Sand						Hyd	romete	r An	alysis			
	Co	parse	Fine 3/4 3/8		Coarse #10	Mediur #20		#40	Fine #100	#2(	)O			Fin	ies				
100	<b>*</b> * * * * * * * * * * * * * * * * * *	<del>, H</del> i	1 1		#10	#40	ŦŦĬ	#-0	#100	#2							$\mp$		7
		8					$\blacksquare$										$\blacksquare$		
90							##												
	*	<u>;</u>	<b>k</b>				$\mp$										$\mp$		
80		*.	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			$= \parallel$	##										$\pm$		
							##										$\pm$		
70		1					$\blacksquare$										$\blacksquare$		
					<u> </u>	$= \parallel$	##										$\pm$		
60		*	<u> </u>				##												
ing		$\pm \pm 1$	,,			*													
Percent Passing																	$\pm$		
ent ]						=#	##										$\pm$		
Perc			<b>*</b>				##	1									##		
40					.,				` ` \										
20							##		<u>`</u> \.								$\pm$		
30						<u> </u>	•	.#									$\mp$		
								*::.			<u>, , , , , , , , , , , , , , , , , , , </u>								
20												`_					$\pm$		
							$\mp$					.]	· 100.				$\mp$		
10											$\setminus$	*	•	`& _.					
													*-	* *	8				
0		<u> </u>									ш						*	*	_
1	00 50	20	10	5	2	1	Gr	ain Size (	<b>mm</b> )	0.1	.05		.02	0.01		.005	.0	0.	.001
			Other Tests				Perc	ent Passii							_				
		*	•	$\Diamond$	4	*	+	•	$\Diamond$	4			*	•	-	$\Diamond$			
	id Limit	NP	14.3	NP	Mass (g			8983.6	25133.	5		D ₆₀			-				
	tic Limit	NP	13.1	NP	2			90.2	98.0	$\dashv$		D ₃₀			╁				
	city Index	NP	1.2	NP	1.5			80.2	93.3	$\dashv$		D ₁₀			╁				
	Content	7.2	6.6	12.0	=	62.1		70.3	86.6	4		Cu			-				
	nsity (pcf)	2.00			3/4			62.9	83.9	$\dashv$		C _C							
	ic Gravity	2.66*	2.66*	2.66*	3/8			48.2	78.5	-	Re	emarks:							7
	rosity				#			39.0	72.1	$\dashv$									
	c Content	<u> </u>	<del>                                     </del>		#1			33.0	65.2	$\dashv$									
	pH	<u> </u>	<del> </del>		#2			29.0	57.1	$\dashv$									
	age Limit	<u> </u>	<del>                                     </del>		#4			25.8	48.9	$\dashv$									
	trometer	$\vdash$			#10			19.0	33.8	$\dashv$									

			Grain S	Size	Distribution ASTM D422	Job No. :	6428
ı	Project: Polymet					Test Date:	4/5/08
Repor	ted To: Barr Engineeri	ng Company				Report Date:	4/6/08
	Location / Boring No.	Sample No.	Depth (ft)	Sample Type	Soil Classification		
Spec 1	RS-05A	07-0231	10-11.5	Bag	Silty Gravel w/sand (GM	<u>(</u> )	
Spec 2	RS-05A	07-0246	11.5-13	Bag	Silty Gravel w/sand (GM	(I)	
Spec 3	RS-05A	07-0215	6-11.5	Bulk	Silty Sand w/Gravel (SM	)	
					udus mastau Data		

Hydrometer	Data
------------	------

Specin	nen 1	Spec	imen 2	Spec	imen 3
Diameter (mm)	% Passing	Diameter	% Passing	Diameter	% Passing
0.031	7.9	0.030	10.7	0.031	17.2
0.020	6.6	0.020	9.1	0.020	13.5
0.012	5.1	0.012	7.4	0.012	10.2
0.009	4.1	0.009	6.2	0.009	7.8
0.006	3.1	0.006	5.0	0.006	6.3
0.003	2.3	0.003	3.6	0.003	3.7
0.001	1.5	0.001	2.4	0.001	2.4

					Grain	Size [	Distribut	tion AS	STM D422	Joh No. :	6428
F	Project: Po	lymet									
Repor	ted To: Ba	rr Enginee	ring Com	pany						Report Date:	4/9/08
						Sample			0.11.011511		
. г	Location /			ple No.		Туре			STM D422  Job No.: 6428  Test Date: 4/8/08  Report Date: 4/9/08  Soil Classification  Sitly Sand w/Gravel (SM)  Sandy Sitl w/Gravel (ML/CL-ML)  Sitly Sand w/gravel (SM)  Fines  ### Output		
*		/RS-06R		7-0223	10-15	Bag					
$  \diamond  $	RS-06A,			'-0339	3.5-7.5	Bulk					
\ \ \ L	RS-06A,			7-0333	7.5-10	Bulk					
	Coa	Grave	el Fine	e	Coarse	Medium	Sand	Fine			
100		1 3/4	4 3/8	#4	#10	#20	#40	#100	#200		
	1										
90		W	<u> </u>								
		<b>      '</b>		<del></del>							
80											
				- '		1.4.					
70					)· <b>*</b>						
								•••			
60								`·	• • • • • • • • • • • • • • • • • • • •		
gu							`\		1		
Percent Passing							*		``.		
ent ]							1117				
Perc								//			
40								1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
								<i>::/</i>			
30									•		
20											
									***		
10										*	
										*	*****
0	50	20			2		-	2	05 02	005	002
1	100	20	10	5	2	1	Grain Size	$(\mathbf{mm})$ 0.	.1 .05 .02 0.0	01 .005	0.001
		(	Other Tests	,			Percent Passi	ng			
		*	•	$\Diamond$		*	•	$\Diamond$		$\Diamond$	
	ıid Limit	NP	17.8	14.6	Mass (g)		19468.0	28067.2			
	tic Limit	NP	14.7	13.9	2'			96.0			
	city Index	NP	3.1	0.7	1.5'		100.0	91.5			
	r Content	6.8	13.9	8.2	1'	-	95.6	88.5			
	ensity (pcf)			<u> </u>	3/4'		92.1	86.4			
	fic Gravity	2.66*	2.66*	2.66*	3/8'	-	85.2	81.8	Remarks:		
	orosity			<u> </u>	#4	-	83.3	76.4			
	ic Content				#10		80.3	69.2			
	pH				#20		76.8	60.8			
	kage Limit			<u> </u>	#40		73.3	52.9			
	etrometer				#100		65.3 57.4	37.3			
	u (psf) issumed)				#200	29.6	57.4	28.4			

			Grain S	Size I	Distribution ASTM D422	Job No. :	6428
F	Polymet					Test Date:	4/8/08
Repor	ted To: Barr Engineer	ing Company				Report Date:	4/9/08
	Location / Boring No.	Sample No.	Depth (ft)	Sample Type	Soil Classification		
Spec 1	RS-06A/RS-06R	07-0223	10-15	Bag	Silty Sand w/Gravel (SM	()	
Spec 2	RS-06A/RS-06R	07-0339	3.5-7.5	Bulk	Sandy Silt w/Gravel (ML/CI	L-ML)	
Spec 3	RS-06A/RS-06R	07-0333	7.5-10	Bulk	Silty Sand w/gravel (SM	I)	

Н١	/drome	ater	Data
$\Pi$	/UI UI I I	JUGI	Dala

Specin	nen 1	Spec	imen 2	Specimen 3				
Diameter (mm)	% Passing	Diameter	% Passing	Diameter	% Passing			
0.031	20.3	0.029	33.0	0.030	18.7			
0.020	16.0	0.019	27.6	0.020	15.6			
0.012	12.2	0.012	21.5	0.012	11.7			
0.009	9.2	0.008	17.1	0.009	9.1			
0.006	7.3	0.006	13.7	0.006	7.4			
0.003	4.6	0.003	8.9	0.003	4.7			
0.001	2.7	0.001	4.9	0.001	2.3			

					Grain	Size	, Di	stribut	ion	۷٥.	TN	1 D	122							
	Project: Po	alvmot			Grain	SIZE	וט ל	Stribut	.1011 /	<del>40</del>	1 10	יט ו	+∠∠					b No. :	64	
	ted To: Ba		oring Com	2227												R		t Date: t Date:	4/8/ 4/10	
перы	teu 10. Da	iii Enginee	ring Com	parry		Sample										110	ероі	Daie.	4/10	7/00
_	Location /	Boring No.	Sam	ple No.	Depth (ft)	Туре						(	Soil Cla	ssificatio	n					
*	RS	5-07	07	7-0235	2-5	Bag						Grav	elly Sil	lty Sand	(SM)					
•	RS	5-07	07	7-0233	0-2	Bag		Silty Sand w/Gravel (SM)												
$\Diamond$	RS	5-07	07	7-0245	10-11	Bag					9	Sandy (	Gravel	w/Silt (0	GP-GM	)				
		Grav	el				San	ıd						Ну	dromet	er Aı	nalysis	š		<u> </u>
	Coa		Fine 3/4 3/8		Coarse #10	Med:	ium ‡ <b>2</b> 0	#40	Fine #100	10	#200	1			Fi	nes				]
100	<b>TT</b>		3/8	- Tet	#10	$=$ $\parallel$		110	#100	10	#200									$\exists$
		/d:																		
90		*:									Ш									
			•				++		$\dashv$		Ш									7
80		1	* ` ` ` •																	
				<b>1</b>							Ш									
70			<b>k</b>		+ + +	٠,,	++				Ш									4
							•													
60				*	$\downarrow \downarrow \downarrow$						Ш								<u> </u>	
вu			<b>\</b>					#	$\mp$											7
Percent Passing			*		<b>*</b>			1	$\blacksquare$		Ш									3
ent F								*	`.											
erce							$\star$				Ш									
<b>–</b> 40								+	#	``									<u> </u>	=
								$\mathbf{X}$		Ì										$\exists$
30								$+ \parallel \rightarrow$	$\Rightarrow$		Ш	٠								4
							٠		$\rightarrow$		Ш	<u> </u>	١, _							
20								<b>-</b>		$\setminus$	$\bigvee$		,.,	,						
														<b>*</b>						
10										<u>`</u>	٠.		*		•					
							++	###	$\Rightarrow$				· • .	*	*	· · ·	•			7
0											Ш				~. ₹	<b>\$</b> :-: <b>3</b>		-		$\exists$
	100	20	10	5	2	1	(	.5 Grain Size (	.2 ( <b>mm</b> )	0.1	1	.05		.02	0.0	1	.005		.002	0.001
			Other Tests					ercent Passi												
		*	•	<b>\Q</b>	7		*	•	<i>♦</i>					*	•		$\Diamond$	1		
Liqu	uid Limit	NP	NP	NP	Mass (	g) 243	36.9	1080.4	2410.	.2			D ₆₀							
Plas	stic Limit	NP	NP	NP		<b>2</b> " 10	0.00		100	0.0			D ₃₀							
Plasti	icity Index	NP	NP	NP	1.	<b>5"</b> 90	).9	100.0	93.1	1			D ₁₀							
Wate	er Content	19.8		9.5		1" 81	5	83.2	82.3	3			Cu							
Dry De	ensity (pcf)				3/	' <b>4"</b> 78	3.0	83.2	70.2	2			C _C							
Speci	fic Gravity	2.66*	2.66*	2.66*	3/	' <b>8"</b> 69	).4	78.7	51.8	8		Ren	narks:							
Po	orosity					#4 62	2.1	75.0	41.2	2										
Organ	nic Content				#	10 53	3.4	71.3	31.8	8										
	pН				#:	20 42	2.0	65.4	25.7	7										
Shrinl	kage Limit				#,	40 33	3.5	57.8	20.0	0										
Pene	etrometer				#10	00 23	3.5	41.2	13.9	9										

#200

17.8

10.9

Qu (psf)

			Grain S	Size	Distribution ASTM D422	Job No. :	6428
l	Project: Polymet					Test Date:	4/8/08
Repor	ted To: Barr Engi	neering Company				Report Date:	4/10/08
	Location / Boring l	No. Sample No.	Depth (ft)	Sample Type	Soil Classification		
Spec 1	RS-07	07-0235	2-5	Bag	Gravelly Silty Sand (SM)	)	
Spec 2	RS-07	07-0233	0-2	Bag	Silty Sand w/Gravel (SM	I)	
Spec 3	RS-07	07-0245	10-11	Bag	Sandy Gravel w/Silt (GP-C	GM)	
					1		

Ηv	dron	neter	Data
1 1 7	ai oi		Data

Specin	nen 1	Spec	imen 2	Specimen 3				
Diameter (mm)	% Passing	Diameter	% Passing	Diameter	% Passing			
0.032	10.1	0.031	22.4	0.032	7.0			
0.021	7.7	0.021	15.8	0.021	5.4			
0.012	5.6	0.013	10.5	0.012	3.8			
0.009	4.2	0.009	8.3	0.009	2.8			
0.006	3.3	0.006	5.7	0.006	2.3			
0.003	1.8	0.003	2.6	0.003	1.2			
0.001	0.9	0.001	1.6	0.001	0.4			

										<del></del>	<del></del>		- : 0.6							
					Grain	ı Size	e Di	stribu	utio	n A	\ST	Μı	<u> </u>	<u>'</u>				No. :		428
	Project: Po	-																Date:		8/08
Repor	ted To: Ba	ırr Enginee	ering Compa	ny		Octobale										Re	port	Date:	4/1	10/08
	Location /	Boring No.	. Sample	e No.	Depth (ft)	Sample Type							Soil Cl	lassification	n					
*	RS-07/	/RS-07R	07-03		2-3	Bag							Gravelly S	Silty Sand (	(SM)					
•		/RS-07R	07-03	381	6-10	Bulk								ty Gravel (						
$\Diamond$			1																	
		Grav	/el				San	nd	<u> </u>	_	_	三		Нус	dromete		alysis		_	
100	L	arse	Fine 3/4 3/8	#4	Coarse #10	Med #	lium # <b>2</b> 0	#40	F	Fine #100	#	200			Fii	nes				
100								1170		π.σ.σ	$\exists \ddot{\parallel}$						$\blacksquare$			
0.0		1	F				$\boxplus$	$\exists \#$	_	$\pm$		$\parallel \downarrow$	$\coprod$	$\equiv$			$\equiv$	<del>-</del>	$\sqsubseteq$	
90							###	###	_	#	#		##	_			#		<u> </u>	
							$\blacksquare$			$\pm$	#		$\blacksquare$							
80			<del></del>		<u> </u>		$\parallel \downarrow \downarrow$		_	#	#	##	##	=			#		<u> </u>	
		<b>\</b>			$+\pm$	<del></del>	###	#	_	丰	#	#	##	#	_	+	#	#_	<u> </u>	7 !
70		**				=	$\boxplus$		$\exists$	干	#		$\blacksquare$	=	=	Ħ	$\exists$			∃ !
		+++			$\Rightarrow$	#	###	##	_	#	#	##	##	=		+	#		<u> </u>	$\exists$ !
60		+++	<b>*</b>	+	#		###	###	_	#	#	##	##	#	_	+	#		<u> </u>	
ing		$\pm \parallel$					$\blacksquare$		$\equiv$	圭			田	=		Ш	$\equiv$			∃ !
Percent Passing		$\pm \pm \pm$	F				$\blacksquare$		_	#		$\boxplus$	##	$\equiv \downarrow =$	_	$\mathbb{H}$	$\exists \pm$	_	$\sqsubseteq$	∄ !
ent		++++					###		_	+		#	##	_			#	_	<del> </del>	
Per 40						<u> </u>	$\blacksquare$		$\equiv$	$\pm$	#		$\blacksquare$				$\blacksquare$			
10			<del>                                     </del>				###	+	$\Rightarrow$	丰	$\pm$	##	##	_			$\pm$	_	<u> </u>	<b>=</b>
20		+++					#:		$\Rightarrow$	$\pm$	#	##	##	#			#	#	<del> </del>	
30							#	1		X		lacksquare	$\blacksquare$	=		$\blacksquare$	$\exists \exists$			] !
20		$\pm \pm \pm$	F		$\exists \pm$		$\mathbb{H}$	##	```,		$\overline{\downarrow}$	$\boxplus$	##	$\equiv \downarrow =$	_	$\mathbb{H}$	$\exists \pm$	_	$\sqsubseteq$	∄ !
20					++		###	###		•	<u> </u>		##	_	_	+	#			コ !
		+			#	=	##	#	$\equiv$	圭				#	=	Ш	$\pm$		<u> </u>	긬 !
10				$\blacksquare \parallel$	===	$\equiv \pm$	$\blacksquare +$	$\equiv \parallel \parallel$	$\equiv \downarrow$	士	$\exists \exists \exists$		*			ŦH	$\exists \pm$			] !
			1 11				###	###	_	$\mp$	#	##	##	•	* *	*			<u> </u>	<b>=</b>
0					$\perp$					土		Щ						<u> </u>	*	
1	100	20	10	5	2	1		Grain Siz	e (mn	n)	0.1		05	.02	0.01		.005		.002	0.001
			Other Tests		٦			ercent Pas	ssing		<b>—</b>				<del>-</del>	ı				ļ
		*	• ND	$\Diamond$			*	27047.0	+	$\Diamond$	$\dashv$		-	*	•	+	$\Diamond$			ļ
	uid Limit	NP	NP NB		Mass		005.2	27047.0			$\dashv$		D ₆₀		<del>                                     </del>	-	=			
	stic Limit	NP	NP		<b>,</b>		0.9	82.5	_		$\dashv$		D ₃₀		<del>                                     </del>	-				
	icity Index	NP	NP		<b>∤</b> '		2.0	74.1			$\dashv$		D ₁₀		<del>                                     </del>	-				
	er Content	24.8	8.7		<b>∤</b> ,		0.6	70.9	_		$\dashv$		Cu		<del>                                     </del>	-				
	ensity (pcf)	2.66*	2.66*		1		5.8	68.5	_		$\dashv$	7	C _C		<u> </u>					
	ific Gravity	2.66*	2.66*		1		1.4	63.4			$\dashv$		Remarks: All 3" gra	: ivel passe	ed 3.5"	seive	<u> </u>			$\neg$
	orosity	<b> </b>	$\vdash$		1		9.9	53.0	-		$\dashv$		.110 6.4	ver pueses	Ju 0.5	JC1	_			
	nic Content	<b> </b>	<del>                                     </del>		1		8.6 5.7	44.0	_		$\dashv$									
	pH kage Limit		$\vdash$	$\longrightarrow$	1		5.7 8.6	34.5 28.1	+	—	$\dashv$									



13.8

#100

#200

28.4

18.4

Penetrometer

Qu (psf)

				Grain S	Size	Distribution ASTM D422	Job No. :	6428
F	Project: Poly	ymet					Test Date:	4/8/08
Repor	ted To: Barr	r Engineerin	ng Company				Report Date:	4/10/08
	Location / Bo	oring No.	Sample No.	Depth (ft)	Sample Type	Soil Classification		
Spec 1	RS-07/RS	S-07R	07-0397	2-3	Bag	Gravelly Silty Sand (SM)	1	
Spec 2	RS-07/RS	S-07R	07-0381	6-10	Bulk	Sandy Silty Gravel (GM)		
Spec 3								
					H	ydrometer Data		

Hydrometer Data
-----------------

Specin	nen 1	Speci	men 2	Specimen 3				
Diameter (mm)	% Passing	Diameter	% Passing	Diameter	% Passing			
0.033	10.5	0.033	7.6					
0.021	7.9	0.022	5.0					
0.013	5.9	0.013	3.5					
0.009	4.6	0.009	2.4					
0.006	3.3	0.007	1.8					
0.003	2.1	0.003	0.8					
0.001	1.3	0.001	0.2					

					Gra	in S	Size	Di	strib	utic	n	AS	T	M	D۷	122	2						No. :		128
	Project: Po																						Date:		0/08
Repor	ted To: Ba	rr Enginee	ering Com	pany																R	lep	ort	Date:	4/1	1/08
	Location /	Boring No.	Sam	ple No.	Depth (		ample Type								(	Soil C	lassific	cation							
*	RS-			07-0384		5-11 Bulk		Soil Classification  Gravelly Silty Sand (SM)																	
•	K3-	06A	07	-0304	3-11		Duik								Glav	eny	onty o	anu (3	101)						
$\Diamond$			+																						
, ľ																									
	Coa	Grave	el Fine	e	Coarse		Medi		Sand Fine									Hydr		er A nes	naly	ysis			
100	* · · · · · · · · · · · · · · · · · · ·	1 3	/4 3/8	#4	#.	0	#2		#40		#1(	00	#2	00						1100					<b>-</b>
	*																			Ħ					
90		x																							
90																				H					
80																									
			X																						
70				<b>*</b>																$\pm$					
60																									
ng																				Ħ					
Percent Passing								$\setminus$																	
ent I									$\downarrow$																
erce									$\parallel \rangle$																
<b>-</b> 40																									
											$\rightarrow$									$\blacksquare$					
30																									
													7												
20																									
																*				H					
10																	ĺ		*_						
10																				*	*_				
0																						$\overline{}$	*	<del>*</del>	
	100	20	10	5		2	1		.5 rain Si		2	0.	1		05		.0:	2	0.01	1	.(	005		.002	0.001
	100		10				1	G	rain Si	ze (mi	m)	0.	1						0.0	L					0.001
	_		Other Tests		_			Pe	rcent Pa	assing															
		*	•	$\Diamond$			7	τ .	•		$\Diamond$							*	•		$\Diamond$				
Liqu	uid Limit	NP			Mas	s (g)	2905	52.2								$D_{60}$									
Plas	stic Limit	NP				2"	95	.9								D ₃₀									
Plasti	icity Index	NP				1.5"	90	.9								D ₁₀									
Wate	er Content	9.7				1"	85	.9								$C_U$									
Dry De	ensity (pcf)					3/4"	82	.9								$C^{C}$									
Speci	fic Gravity	2.66*				3/8"	75.	.5							Ren	narks	:								
Po	orosity					#4	69	.5																	
Organ	ic Content					#10	62	.1																	
	рН					#20	53.	.8																	
Shrinl	kage Limit					#40	46	.6																	
Pene	etrometer					#100	34	.1																	
Q	u (psf)					#200	27	.0																	
	assumed)				<u> </u>																				
							F	OIL	NEE																
	0201 Pr	wont Ave	South S	:4- 107	,			NGI	NEF	RIN	JG							inata	1.1	:			5420-34	100	

					Grain S	Size	Distri	bution ASTM	D422	Job No.	: 6428
	Project:	Polyme	t							Test Date	e: 4/10/08
Repo	rted To:	Barr En	gineerir	ng Company						Report Date	e: 4/11/08
	Location	n / Borin	g No.	Sample No.	Depth (ft)	Sample Type			Soil Classification		
Spec 1	]	RS-08A		07-0384	5-11	Bulk			Gravelly Silty Sand (SM	)	
Spec 2											
Spec 3											
						Hy	ydrome	ter Data			
		0				-	<u> </u>			2	
Dia			men 1			):		men 2		Specimen 3	Dana!
Diar	neter (m 0.030	1111)		% Passing 17.5	L	Diamete	er	% Passing	Diameter	%	Passing
	0.030			14.5	-				-		
	0.020			10.5							
	0.009			8.7							
	0.006			6.5							
	0.003			3.8							
	0.001			1.5							

	_				Gra	in S	ize	Dist	ributi	on	AS	ΤN	VI [	)42	22						No.		6428
	Project: Po																	+_			Date		4/9/08
Repor	ted To: Ba	ırr Enginee	ering Comp	oany		Con	nnla											-	≀ер	ort	Date	e:	4/14/08
	Location /	Boring No.	Sam	ple No.	Depth (	San ft) Ty								So	l Clas	sificatio	n						
*		5-09		-0210	1-7		ılk						G			y Sand							
•	- 10		0,	0210										14101	iy om	y ourie	(0111)						
$\Diamond$																							
L								0 1								**	,						
	Coa	Grav arse	Coarse	1	Mediun	Sand Fine					Hydrometer Analysis Fines												
100			Fine 74 3/8	#4		10	#20	#4	0		00	#20	00										
												$\blacksquare$											
90												Ш											
, ,							#					Ш											
90																							
80			*																				
70							-																
60						k																	
Percent Passing																							
<b>sg</b> 50																							
ent							<b>*</b>																
Per 40																							
40												$\blacksquare$											
30										$\overline{}$													
20												$\bigvee$											
													$\rightarrow$										
10							+								*_	*							
																	*	*_	- VE				
0																					*		<del>-</del> *
	50	20	10	5	1	2	1	Grai	n Size (n	.2 <b>nm)</b>	0.	1	.0.	5		.02	0.0	01		005		.002	0.001
			Other Tests					Percei	nt Passing	g													
		*	•	$\Diamond$			*		•	<b>\( \)</b>	>					*	•		<b>\\</b>	>			
Liqu	uid Limit	NP			Mas	ss (g)	20618	.8						D	60								
Plas	tic Limit	NP				2"	94.0							D,	30								
Plasti	city Index	NP				1.5"	88.9							D	10								
Wate	r Content	6.1				1"	84.6							С	U								
Dry De	ensity (pcf)					3/4"	82.2							С	С								
Speci	fic Gravity	2.66*				3/8"	76.9						R	temai	ks:								
Po	orosity					#4	68.3																
Organ	ic Content					#10	58.5																
	рН					#20	48.2																
	kage Limit					#40	39.3																
	etrometer					#100	25.1				一												
	u (psf)					#200	18.1				$\neg$												
	ussumed)																						
							<b>5</b> 0	IL	EERI														
	0001 D		0 4 0			F		CIN	ומשם	NC												0.400	

					Grain S	Size	Distri	bution ASTN	1 D422	Job No. :	6428			
	Project:	Polymet								Test Date:	4/9/08			
Repo	rted To:	Barr Eng	gineerir	ng Company						Report Date:	4/14/08			
Sample  Location / Boring No. Sample No. Depth (ft) Type Soil Classification									Soil Classification					
Spec 1		RS-09		07-0210	1-7	Bulk		Gravelly Silty Sand (SM)						
Spec 2														
Spec 3														
						Ц	/dromo	ter Data						
							yurome	lei Dala						
		Specir	men 1				Speci	men 2		Specimen 3				
Diar	neter (m	ım)	(	% Passing		Diamet	er	% Passing	Diameter	% Pa	ssing			
	0.032			11.6										
	0.021			9.4										
	0.012			7.0										
	0.009			5.4										
	0.006			4.3										
	0.003			2.8										
	0.001			1.5										

# Attachment E

Overburden Geotechnical Investigation - Boring Logs and Material Testing Data Sheets



Barr Engineering Company 4700 West 77th Street • Minneapolis, MN 55435-4803

Phone: 952-832-2600 • Fax: 952-832-2601 • www.barr.com An EEO Employer

Minneapolis, MN • Hibbing, MN • Duluth, MN • Ann Arbor, MI • Jefferson City, MO • Bismarck, ND

# **Technical Memorandum**

**To:** James Tieberg and Rich Patelke, PolyMet Mining

From: Vicki Hagberg, EIT

Tom Radue, PE Nancy Dent, PE

**Subject:** 2010 Polymet Geotechnical Investigation

**Date:** August 16, 2010 **Project:** 23/69-0C29.09

This document summarizes the work completed during the 2010 geotechnical investigation and overburden characterization within the overburden and Category 1 (CAT 1) waste rock stockpile area at the proposed Polymet NorthMet mine site near Hoyt Lakes, Minnesota. The purpose of the work was to further characterize the soil stratigraphy and strength characteristics within the proposed CAT 1 stockpile area.

Exploratory borings with standard penetration testing (SPT) were completed by American Engineering Testing (AET) at each of four drilling sites: J003, J010, J027, and J037. Boring locations are shown on the Boring Locations diagram included in the appendix to this memorandum. Using the information from the SPT borings, thinwall samples were collected from new offset boreholes at J003, J010, and J027. Pressuremeter tests were then also completed in new offset boreholes. Thinwall sample collection and pressuremeter testing were not completed at J037 because of the shallow depth to auger refusal. Drilling was completed between February 16 and February 26, 2010. In-laboratory geotechnical testing was completed on the soil samples at Soil Engineering Testing (SET) in April and May, 2010. Drilling observation and test data analysis was completed by Barr Engineering (Barr) and is summarized in the balance of this memorandum.

## **Soil Characteristics**

SPT borings were completed at four locations to investigate the soil stratigraphy within the overburden and CAT 1 waste rock stockpile area. The borings were completed to auger refusal which correlated to the expected depth to bedrock as provided by PolyMet. Two-foot SPT samples were driven every 2.5 feet, and samples were logged using the USCS soil classification system and saved in jars for testing.

To: James Tieberg and Rich Patelke, PolyMet Mining

From: Vicki Hagberg, Nancy Dent, Tom Radue Subject: 2010 Polymet Geotechnical Investigation

Date: August 16, 2010

Page: 2

Index and strength testing were completed on the soils encountered. The boring logs and test results are included in the appendix. SPT sampling and the laboratory testing indicated that there are three general soil types at the CAT 1 stockpile area: peat, silt, and silty sand with clay and gravel (silty sand). The silt and silty sand are glacial till materials with varying amounts of clay, silt, sand, and gravel. In addition, a small quantity of topsoil and fill material were encountered on site but are considered to be minor components of the site geology. The characteristics of the three soil types are described in the sections below. However, based on the small number of borings completed within the CAT 1 stockpile area, it should not be assumed that these borings fully describe the soil conditions between borings. It is quite likely that the stratigraphy is variable and that additional soil types may occur on site. A summary of the soil test results is provided in the following table.

## **Soil Parameters Summary Table**

			Dry Unit			Soil Shear Strength							
	Sat. Unit	Moist Unit				ESSA (d	rained)	USSA (un	drained)				
Material	Weight [pcf]	Weight [pcf]	Weight [pcf]	Permeability [ft/s]	Permeability [cm/s]	Cohesion [psf]	Friction Angle [deg.]	Cohesion [psf]	Friction Angle [deg.]				
Peat	75 ¹	66 ²	15 ³	1.18E-08 ⁴	3.60E-07 ⁴	500 ¹	0 1	280 ⁵	0 5				
Silt	126 ⁷	126 ²	101 ³	3.28E-09 ¹	1.00E-07 ¹	580 ⁸	0 8	580 ⁵	0 ⁵				
Silty Sand	155 ¹	150 ²	139 ³	1.69E-08 ⁴	5.15E-07 ⁴	0 6	38.5 ⁶	0 6	35.3 ⁶				

### Notes:

- 1. Assumed value
- 2. Calculated as (1+[average moisture content % of soil type])*[dry unit weight of soil type]
- 3. Average dry unit weight value from test data
- 4. Geometric mean of permeability test values
- 5. Calculated as 0.5* (unconfined compressive strength) from test data
- 6. Minimum of consolidated undrained triaxial (CIU) with pore pressure measurements test failure envelopes.
- 7. Calculated as (1+[average moisture content % of soil type])*[dry unit weight of soil type]. Assumes soil is saturated as tested.
- 8. Drained case assumed to be the same as the undrained case.

As indicated in the table above, two types of Soil Shear Strength are reported, corresponding to the two types of stability analyses typically performed for stockpiles of this type: the Undrained Strength Stability Analysis (USSA) and the Effective Stress Stability Analysis (ESSA). The USSA is performed to analyze the case in which loading or unloading is applied rapidly and excess porewater pressures do not have sufficient time to dissipate during shearing. This scenario typically applies to loading from, for example, stockpile construction where the loading takes place quickly. It is often referred to as the "end-of-construction" case. The ESSA is performed to account for much slower loading or unloading, or no external loading, in which the drained shear strength of the materials is mobilized and no shear-induced

To: James Tieberg and Rich Patelke, PolyMet Mining

From: Vicki Hagberg, Nancy Dent, Tom Radue Subject: 2010 Polymet Geotechnical Investigation

Date: August 16, 2010

Page: 3

porewater pressures are developed. For example, a stockpile after porewater pressures have dissipated from construction is best analyzed using the ESSA method. For this reason, the ESSA is often referred to as the "long term" case. Testing was completed to analyze the soil strength under both of these conditions. In addition, consolidation and soil elasticity parameters were also evaluated by lab and pressuremeter testing of the soils. Soil test results are described in greater detail in the following paragraphs.

## **Peat**

Peat was encountered at the surface of borings J003 and J027. The peat layer at J003 was one foot thick and was frozen at the time of drilling, so testing was not completed on peat samples from boring J003. The peat layer at J027 was approximately 7 feet thick and was generally sapric (highly decomposed) as classified in the boring logs provided by AET. The peat layer was characterized by N-values tranging from 1 to 2 indicating the layer is very soft and loose. The organic content of the peat ranged from 40.6% to 52.8% and the moisture content ranged from 287.3% to 404.6% as tested by SET. The dry density of the peat ranged from 12.8 to 16.9 pounds per cubic foot.

In addition to the SPT information and index testing, strength, consolidation, and permeability testing was also completed on peat samples. Unconfined strength testing (ASTM D2166) resulted in an unconfined compressive strength of the peat of 560 psf and corresponding undrained shear strength 2of 280 psf. Permeability testing on the peat resulted in saturated hydraulic conductivity at 1.18x10⁻⁸ ft/s (3.60 x10⁻⁷ cm/s).

Consolidation testing on the peat at boring J027 resulted in the following parameters: preconsolidation pressure (Pc) = 500 psf, compression index (Cc) = 2.82, and recompression index (Cr) = 0.50. During consolidation testing, the maximum displacement limit was reached during the 8000 psf loading sequence. The consolidation parameters and the results of the test indicate that the peat would

1 N-value is used to correlate to undrained strength of a soil. N-values are the sum of the 6-12" and 12-18" blow counts. The 0-6" and 18-24" blow counts are not included in the N-value.

2 Cohesion is the same as undrained shear strength in the mohr-coulomb soil model used to describe the failure envelopes of the soil encountered. The terms "shear strength" and "cohesion" are used interchangeably. This is an undrained strength value, not a drained strength value.

To: James Tieberg and Rich Patelke, PolyMet Mining

From: Vicki Hagberg, Nancy Dent, Tom Radue Subject: 2010 Polymet Geotechnical Investigation

Date: August 16, 2010

Page: 4

consolidate/settle significantly under the load of a large stockpile. If the peat layer is left unexcavated beneath the stockpile, consolidation would likely be of large magnitude and continue over a long period of time. The amount of consolidation would also be dependent on the depth of the peat formation beneath the stockpile area. Detailed consolidation modeling would be necessary to further evaluate the extent of the consolidation of a peat layer beneath the CAT 1 stockpile. The in-laboratory test results and boring logs for the peat and other soils encountered during the exploration are included in the appendix of this report.

## Silt

Silt was encountered beneath the peat at borings J003 and J027 and beneath the fill material at boring J010. The silt layer was generally less than one foot thick and contained some organic material, although less than the peat. The silt also contained some sand and clay. The N-values in the silt layer ranged from 5 to 8 indicating that the layer is soft. The silt layer at J027 was too thin to provide valuable testing results. The moisture content ranged from 21.8% to 27.6% and 67.4% of the soil passed the #200 sieve in the grain size distribution test by SET. The dry density of the silt ranged from 97 to 105.2 pounds per cubic foot.

In addition to the SPT information and index testing, strength, consolidation, and permeability testing was also completed on the silt samples. Unconfined strength testing (ASTM D2166) resulted in an unconfined compressive strength of the peat of 1,160 psf and corresponding undrained shear strength of 580 psf. Permeability testing was not completed on the silt because of the small amount of material encountered while drilling.

Consolidation testing on the silt at boring J003 resulted in the following parameters: preconsolidation pressure (Pc) = 3200 psf, compression index (Cc) = 0.155, and recompression index (Cr) = 0.02. These results indicate that the silt will consolidate much less than the peat under the same loading, however, some consolidation would be expected to occur. Consolidation of the silt layer would also be limited by the thin thickness of the soil layer as encountered while drilling. Detailed consolidation modeling would be necessary to further evaluate the extent of the consolidation of a silt layer beneath the CAT 1 stockpile. Laboratory test results and boring logs are included in the appendix of this report.

To: James Tieberg and Rich Patelke, PolyMet Mining

From: Vicki Hagberg, Nancy Dent, Tom Radue Subject: 2010 Polymet Geotechnical Investigation

Date: August 16, 2010

Page: 5

## Silty Sand

Silty sand was encountered at all borings conducted during the 2010 geotechnical exploration. The silty sand layer made up the bulk of the soil found on the site and extended from the bottom of the silt layer to bedrock. The silty sand is a well graded material which also contained clay, gravel and cobbles. Gravel and cobbles were encountered during drilling at all boring locations. The N-values in the silty sand layer ranged from 14 blows to hammer refusal with an average of 42 blows indicating that the layer is generally very stiff and dense. The moisture content ranged from 6.3% to 9.8% with an average of 7.7%; however these values are likely lower than insitu moisture contents because of the sandy nature of the soil and related moisture losses while sampling. A saturated unit weight of 155 pcf was assumed for the silty sand which corresponds to an insitu moisture content of 11%. This saturated moisture content was considered reasonable given the dense nature of the silty sand and the results of the completed moisture content tests. The dry density of the silty sand ranged from 133.8 to 143.3 pounds per cubic foot. Seven grain size distributions were completed on this soil type with 21.1% to 34.9% of the soil passing the #200 sieve.

In addition to the SPT information and index testing, strength, consolidation, compaction, and permeability testing was also completed on the silty sand samples. Consolidated undrained triaxial tests with porepressure measurements (ASTM D4767) were completed to evaluate shear strength of the silty sand samples in both drained (ESSA) and undrained (USSA) conditions. The effective friction angle of the silty sand ranged from 38.5° to 42.4°. A friction angle of 38.5° indicates a relatively strong soil. The undrained friction angle ranged from 35.3° to 42.2° which correlates well with undrained shear strength and blow count correlations in the silty sand zone (Kulhawy and Mayne, 1990), which ranged from 33.4° to 46.1°. An undrained friction angle of 35.3° indicates a relatively strong soil. It is assumed that the silty sand will not have a significant cohesive strength in either the drained or undrained case because of the relatively low amount of clay encountered in the soil samples.

Permeability testing on the silty sand resulted in saturated hydraulic conductivity ranging from  $1.02 \times 10^{-8}$  ft/s to  $3.08 \times 10^{-8}$  ft/s ( $3.11 \times 10^{-7}$  to  $9.39 \times 10^{-7}$  cm/s) with a geometric mean of  $1.69 \times 10^{-8}$  ft/s ( $5.15 \times 10^{-7}$  cm/s). In addition to the permeability testing, a standard proctor test was completed on a composite sample of silty sand from borings J003, J010 and J027 since a bulk sample was not available to complete the proctor test. The resulting optimum moisture was 6.7% and the maximum density was 138.7 pcf after corrections for gravel in the samples.

To: James Tieberg and Rich Patelke, PolyMet Mining

From: Vicki Hagberg, Nancy Dent, Tom Radue Subject: 2010 Polymet Geotechnical Investigation

Date: August 16, 2010

Page: 6

Pressuremeter testing (ASTM 4719) was conducted in the silty sand zone to determine the elastic behavior of the soil under load. Pressuremeter testing requires good preparation of the borehole, so testing in soil with gravel and cobbles is difficult because of the difficulty in maintaining a clean and stable borehole. Fourteen tests were attempted with six having marginal or good data, as interpreted by AET. Good tests were completed to full yield and the borehole preparation was considered of the best quality. Marginal tests may have reached yield but did not reach soil failure or the soil may have been slightly disturbed. Poor tests occurred at locations with poor borehole quality and are not included in this report. The elastic modulus of the soil (E₀) generally increases with depth. The results of the pressuremeter testing are summarized in the table below and are included in the report appendix.

## **Pressuremeter Test Results**

Boring	Top Depth [ft]	Bottom Depth [ft]	Test Quality	E ₀ [psf]
J003	3.1	4.6	Marginal	26,000
J003	6.1	7.6	Marginal	102,000
J003	6.6	8.4	Good	278,000
J003	21.6	23.4	Good	528,000
J003	13.8	15.3	Marginal	152,000
J003	16.9	18.7	Good	458,000

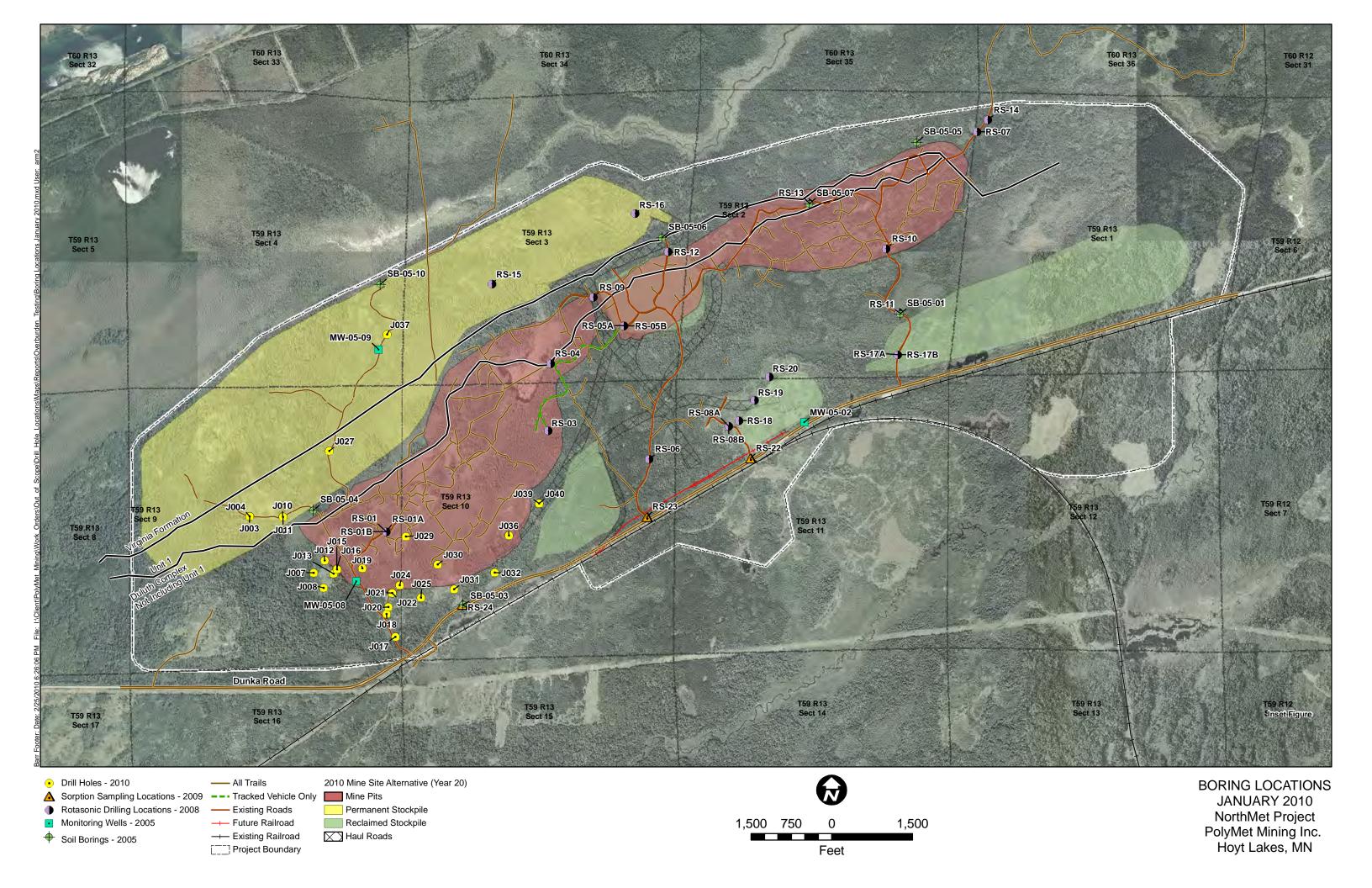
Laboratory test results and boring logs are included in the appendix of this report.

# Conclusion

The 2010 geotechnical investigation at the Polymet overburden and Category 1 (CAT 1) waste rock stockpile was completed in February, 2010. Exploratory borings with Standard Penetration Testing were completed at four locations in the CAT 1 stockpile area. Thinwall sample collection and pressuremeter testing were completed in offset borings at three of the four locations. Boring logs and pressuremeter testing were completed by AET and are attached to the appendix of this report.

Laboratory testing and analysis was conducted from April through June, 2010, and the results are summarized in this document. Laboratory testing included moisture testing, organic content, grain size distribution, consolidation testing, unconfined compressive strength testing, triaxial testing, permeability testing, and standard proctor testing, and the results are included in the appendix of this document.

#### **Technical Memorandum**


James Tieberg and Rich Patelke, PolyMet Mining Vicki Hagberg, Nancy Dent, Tom Radue

From: Subject: 2010 Polymet Geotechnical Investigation

Date: August 16, 2010

Page:

Peat, silt, and silty sand were the three general soil types encountered while drilling at the CAT 1 stockpile. The peat is very soft and loose and has low shear strength. The peat is also expected to consolidate greatly under stockpile loading. A thin layer of silt underlies the peat layer. The silt is soft with relatively low shear strength and a moderate capacity to consolidate limited by the thin layer thickness. The silty sand makes up the bulk of the soil encountered on site and also includes some clay, gravel and cobbles. The silty sand is generally very stiff and has high shear strength. The silty sand is unlikely to consolidate substantially.





June 14, 2010

PolyMet Mining Corporation c/o Ms. Vicki Hagberg, EIT Barr Engineering 3128 14th Avenue East Hibbing, MN 55746

Re: Geotechnical Exploration Summary
PolyMet Northmet
Overburden Geotechnical Investigation
Hoyt Lakes, Minnesota
AET Project #07-04509
Barr Project # 23/69-0C29.07 WA1A

#### **Introduction**

We understand Barr Engineering (Barr) is providing project management and design services for the PolyMet Mining Corporation (PolyMet) Northmet mine near Hoyt Lakes, Minnesota. On behalf of PolyMet, Barr authorized American Engineering Testing, Inc. (AET) to provide geotechnical exploration services to aid in site planning.

AET recently completed a subsurface exploration program at the PolyMet Northmet mine site. The exploration consisted of advancing four standard penetration test borings, collecting Pitcher tube samples, collecting thinwall tube samples, and performing pressuremeter testing in offset borings. This report presents the results of the subsurface exploration.

### **Scope of Services**

Our scope of services, as authorized by Barr, consisted of:

- Arranging for the location of existing public underground utilities through the Gopher State One-Call Service;
- Performing four standard penetration test (SPT) borings at locations denoted in the field by Barr;
- Performing Pitcher tube and thinwall tube sampling in offset borings at each of the four SPT boring locations;
- Performing eleven pressuremeter tests in offset borings at each of the four SPT boring locations (fourteen attempts were made at performing pressuremeter tests due to difficult soil conditions); and,

Ms. Vicki Hagberg, EIT PolyMet Northmet Overburden Geotechnical Investigation June 14, 2010 AET Project #07-04509 Barr Project #23/69-0C29.07 WA1A Page 2 of 4

• Providing a data report that includes logs of the test borings, pressuremeter test results and a summary of subsurface conditions encountered in the test borings.

### **Test Boring and Sampling Methods**

SPT borings and offset borings for pressuremeter testing were advanced in unconsolidated material using 3.25" inner diameter hollow stem augers (HSA). Offset borings for Pitcher tube and thinwall tube sampling were performed using 6.625" inner diameter HSA. Soil samples were obtained from the SPT borings using a standard split spoon sampler in general accordance with ASTM designation D1586. Pitcher tube and thinwall tube samples were collected in general accordance with ASTM D1587.

Pressuremeter testing was performed in general accordance with ASTM 4719. The borehole was prepared using a clean-out tube (COT) consisting of one or more of the following: a standard split-spoon sampler, a California sampler, and a slotted casing.

Boreholes were abandoned per Minnesota Department of Heath regulations. Soil classifications were performed on recovered samples in general accordance with ASTM designation D2488.

Barr provided the test boring GPS coordinates and elevations for the SPT borings to AET, which are shown on the SPT boring logs. The GPS coordinates reference Minnesota State Plane North, NAD83. Elevations reference mean sea level.

#### **Results**

### Geologic Conditions

Logs of the test borings are attached to this letter for your review. Please refer to the logs for information concerning soil layering, soil classification, geologic description, and moisture. Relative density or consistency based on the standard penetration resistance (N-value) recorded while using with the standard split spoon sampler is also noted on the SPT and pressuremeter testing logs.

In general, the SPT borings indicate swamp deposits, existing fill, or topsoil overlying till. Swamp deposits were encountered in test borings J003 and J027, and extend to depths of approximately  $2\frac{1}{2}$  and  $7\frac{1}{2}$  feet, respectively. The swamp deposits consist of peat and organic silt. The existing fill encountered in test boring J010 consists of mixtures of silty sand, gravel, organic sandy silt and/or organic silty sand. The silty sand encountered between the depths of approximately  $2\frac{1}{2}$  and 5 feet in test boring J003 may be existing fill (tailings). Approximately 6 inches of topsoil was encountered in J037, and is composed of organic silt.

Ms. Vicki Hagberg, EIT PolyMet Northmet Overburden Geotechnical Investigation June 14, 2010 AET Project #07-04509 Barr Project #23/69-0C29.07 WA1A Page 3 of 4

Till was encountered in all of the test borings. The till is comprised of sandy silt, silty sand, silty sand with gravel, and gravelly silty sand. The recorded N-values indicate the till is mainly medium dense to dense. Apparent cobbles were encountered in the till in test boring J027 and J037.

Auger refusal was encountered in each of the SPT borings at depths between 18.7 and 24.5 feet. Pitcher sampler refusal was also encountered in offset test boring J027-T at a depth of 15.1 feet. Refusal may have been caused by cobbles, boulders, or bedrock. Rock coring would need to be performed to document the cause of auger refusal.

#### Water Levels

Groundwater was encountered in test borings J003, J010, J027, J003-P, J010-P, and J010-T at depths between 3 and 11 feet below the existing ground surface. Groundwater levels representing static conditions cannot be reliably measured unless measurements are taken from piezometers installed at the site.

#### Pressuremeter Tests

A total of 14 pressuremeter tests were attempted. The pressuremeter test data from three tests is considered complete, while the data is considered marginal for three tests, and the data from the remaining eight tests is considered poor. The poor tests are mainly the result of an enlarged and irregular borehole caused by the sloughing of cobbles and dense sandy soils encountered in the borings. The enlarged borehole prevented the pressuremeter probe from making suitable contact with the borehole during the application of a test. The results of the completed and marginal tests are attached to this report.

### Laboratory Tests

Laboratory testing was performed by others on SPT, Pitcher, and thinwall samples selected by Barr. The laboratory test results were provided to AET, and are attached to this report. Results that could be included in the logs are shown in the respective columns on the right side of the logs.

### **Limitations**

The data derived through the exploration program have been used to develop our opinions about the subsurface conditions at your site. However, because no exploration program can reveal totally what is in the subsurface, conditions between borings and between samples and at other times, may differ from conditions described in this report. The exploration we conducted identified subsurface conditions only at those points where we took samples or observed ground water conditions. Depending on the sampling methods and sampling

Ms. Vicki Hagberg, EIT PolyMet Northmet Overburden Geotechnical Investigation June 14, 2010 AET Project #07-04509 Barr Project #23/69-0C29.07 WA1A Page 4 of 4

frequency, every soil layer may not be observed, and some materials or layers which are present in the ground may not be noted on the boring logs.

If conditions encountered during construction differ from those indicated by our borings, it may be necessary to alter our conclusions and recommendations, or to modify construction procedures, and the cost of construction may be affected.

The extent and detail of information about the subsurface condition are directly related to the scope of the exploration. It should be understood, therefore, that more detailed information can be obtained by means of additional exploration.

### Standard of Care

Our services for your project have been conducted to those standards considered normal for services of this type at this time and location. Other than this, no warranty, either expressed or implied, is intended.

### Closing

We trust that this letter report provides you with the information that you need at this time. If you should have any questions, or if you require additional information, please contact AET at 628-1518.

Reported by:

American Engineering Testing, Inc.

Sara L. Leow, PE Geotechnical Engineer Reviewed by:

American Engineering Testing, Inc.

sleow@amengtest.com

Robert J. Wahlstrom, PE, PG Senior Geotechnical Engineer rwahlstrom@amengtest.com

Attachments:

Test Boring Logs (9 pages) Boring Log Notes (1 page)

Unified Soil Classification System (1 page)

Geologic Terminology (1 page)

Pressuremeter Test Results (6 pages)

Laboratory Testing Results Provided by Barr (25 pages)



Northing: 734386 Easting: 2895852 BARR JOB NO: 23/69-0C29.07 WA1A

'	No	orthing: 73	54586 E	asting	g: 28	895852			ВA	RR J	OR V	U: 23	0/69-0	C29.	U / VV	AIA
AET JO	DB NO: <b>07-04509</b>						LC	G OF	ВО	RING N	Ю	J0	03 (	p. 1	of 1	)
PROJEC	CT: PolyMet Nort	hmet M	ine; Hoy	yt La	kes	s, MN										
DEPTH IN FEET	SURFACE ELEVATION:	1617.0			G	EOLOGY	N	MC	SA	MPLE	REC	FIELI		BORA	TORY	TESTS
FEET	MATERIAL 1						IN	IVIC	Т	TYPE	IN.	WC	% ORG	LL	PL	%-#200
1 -	PEAT, fibric with wood, be about 12" (PT)	olack, froze	en above	344	SW	AMP		F/M		SU		329	40.6			
2 –	ORGANIC SILT, dark bro					POSIT			1							
3 –	SILTY SAND, fine graine be tailings)	ed, brown (	SM) (may		СО	ARSE	5	M	X	SS	11					
4 +	SILTY SAND, dark gray,	moist (SM	(may be		AL OR	LUVIUM			[1]							
5 – 6 –	tailings) SANDY SILT, dark gray,	moist with	wet lenses	<u>/                                     </u>	TA	ILINGS	8	M/W	X	SS	11	25				67
7 –	(ML) (may be tailings)				:				1							
8 –	SILTY SAND WITH GRA moist with wet lenses (SM		y, loose,				8	M/W	M	SS	7					
9 —	SILTY SAND, a little grav	vel, dark gi	ray, moist		<u>.</u>				1							
10 — 11 —	with wet lenses, medium of	dense (SM)	1		:		14	<u> </u>	X	SS	8					
12 -									乜							
13 —							15	M	X	SS	10					
14	SILTY SAND WITH GRA				-				[[							
15 — 16 —	medium dense, moist with wet fine to coarse grained			1	TIL	L	23	M	X	SS	10					
17 -	about 24.9-25.1' (SM)	•	C		:				乜							
18 —							32	M	X	SS	7					
19 —									ß							
20 – 21 –							36	M	X	SS	11	8				35
22 –									<u> </u>							
23 —							25	M	X	SS	10					
24 —									<u> </u>							
25 –							30	W	X	SS	13					
26 – 27 –								w	3	SS	1					
2,	AUGER REFUSAL AT A						50/0.1			20	1					
	Borehole backfilled with r															
	Laboratory test results on	this log we	ere provide	d												
	by Barr; laboratory tests v Engineering Testing, Inc.	were perfor	med by So	il												
	3															
DEPTH: DRILLING METHOD WATER LEVEL MEASUREMEN														OTE.	DEE	ER TO
		DATE	TIME	SAMP	LED	CASING DEPTH		Æ-IN PTH	Г	ORILLIN	NG VET	WATI	ER ,	ЮТЕ: ГНЕ А		
0-	27' 3.25" HSA	2/16/10	13:47	DEPT <b>27.</b>		27.0		5.5	FL	UID LE	VEL	10.7	.L ,	SHEET		
		2/10/10	13.7/	41.	*	<i>⊒1.</i> 0		,,,				10./		XPLA]	NATIO	ON OF
BORIN	G LETED: <b>2/16/10</b>										$\dashv$		TI	ERMIN	NOLO	GY ON
	A LG: <b>TDD</b> Rig: <b>27C</b>											$\dashv$	TH	IS LO	G	
06/06		1														



AET JC	OB NO: <b>07-04509</b>						LOG O	F BC	ORING N				(p. 1		
PROJE		thmet M	ine; Ho	yt Lal	kes, MN										
DEPTH IN FEET	SURFACE ELEVATION:_				GEOLOG'	Y	и мс	S	AMPLE TYPE	REC	FIELI	) & L	ABORA	TORY	TESTS
FEET	MATERIAL					r	MC		TYPE	IN.	WC	% #4	LL	PL	% <b>-</b> #200
1 —	See boring J003 for mater	ial descrip	tion					1							
2 -								1							
3 —	Marginal pressure meter to	aat narfarm	ad hatayaa	.		5			1						
4 —	3.1 and 4.6 feet	est periorii	ied betwee	11					COT						
5 —															
6 —	Marginal pressure meter to	est perform	ned between	n		3									
7 —	6.1 and 7.6 feet	•				2	8		COT						
8 –								L7	<u> </u>						
9 - 10 -								}							
11 –	Poor pressure meter test p	arfarmad b	atrivaan 10	0		3.	2								
12 -	and 12.3 feet	errormed o	etween 10.	.0		3	2		COT						
13 —															
14 —	Poor pressure meter test p	etween 13.	.6		3	8		COT							
15 —	and 15.1 feet					2	4		COI						
16 —								17							
17 —	D	C 11	. 17			2	7		-						
18 – 19 –	Poor pressure meter test p and 19.1 feet	erformed b	etween 17.	.6		3	,		СОТ						
20						3									
20	END OF BORING AT 2 Borehole backfilled with r		t grout												
	Offset 4' southeast of bori	ng J003-T													
	See borings J003-P2 and .	J003-P3													
DEP	TH: DRILLING METHOD			WATE	ER LEVEL N	TE A ST	DEME	NTC	<u> </u>						
		DATE	TIME	SAMPL	ED CASIN		AVE-IN DEPTH	_	DRILLI		WATI	ΞR	NOTE: THE A		
0-	-17' 3.25" HSA	2/24/10	8:45	DEPT 16.0	H DEPT	_	13.0	FI	LUID LE	EVEL	3.0	EL	SHEE?		
		2/24/10	0.43	10.0	INUITE		13.0				3.0		EXPLA		
BORIN COMPI	IG LETED: <b>2/24/10</b>					$\top$		+		$\overline{}$		7	TERMIN	OLOG	GY ON
	A LG: <b>TDD</b> Rig: <b>27C</b>												TH	IS LO	G



									חכ	KK JC	יועל					
AET JO	OB NO: <b>07-04509</b>						LC	G OF	BC	RING N	Ю	J003	3-P2	(p.	1 of	1)_
PROJE	PolyMet Nor	thmet M	line; Hoy	yt La	kes,	MN										
DEPTH	SURFACE ELEVATION:_				GE	OLOGY	N	MC	SA	AMPLE FYPE	REC IN.	FIELI	0 & L	ABORA	TORY	TESTS
DEPTH IN FEET	MATERIAL	DESCRIPTI	ON				IN	MC	,	ГҮРЕ	ĪN.	WC	% #4	LL	PL	%-#20¢
1 -	See boring J003 for mate	rial descrip	otion						<b>}</b>							
2 -									ß							
3 -									}							
4 –									}							
5 -									1J							
6 -																
7 -	Good pressure meter test	nerformed	between 6	6												
8 -	and 8.4 feet	Perrormen								COT						
9 –																
10 -									Ļ							
11 -	-								<b>{</b> {							
12 —									<b>X</b>							
13 —	-								{							
14 —	1							X								
15 —	-								片							
16 —	-								<u>}</u>							
17 —									}							
18 —	_								}							
19 —									{}							
20 —	-						20									
21 -																
22 —	Good pressure meter test	performed	between				31			СОТ						
23 —	21.6 and 23.4 feet									001						
24 —	_															
25 —	END OF BORING AT	25.0 FEET														
	Borehole backfilled with	neat cemen	t grout													
	Offset 4' east of boring Jo	003-P														
	See borings J003-P and .															
DEI	 PTH: DRILLING METHOD			WATI	ER LE	EVEL MEA	L ASURI	 EMEN	L ITS					NOTE	DEEL	D TO
		DATE	TIME	SAMPI	LED	CASING	CAV	Æ-IN	l	ORILLI	NG	WATI LEVE		NOTE: THE A		
0-1	9½' 3.25" HSA	DATE	THVIE	DEPT	TH	DEPTH	DE	PTH	FL	UID LE	VEL	LEVE	EL	SHEE		
													-	EXPLA		
BORIN	NG PLETED: <b>2/24/10</b>	+												ERMI		
	LA LG: <b>TDD</b> Rig: <b>27C</b>									+		$\dashv$	TH	IS LO	G	



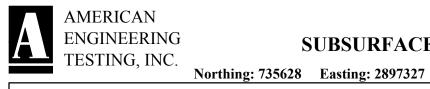
AET JO	OB NO: <b>07-04509</b>						LO	G OF	ВС	ORING N				(p.		
PROJE	PolyMet Nort	thmet M	ine; Hoy	yt Lal	kes, MI	N										
DEPTH IN FEET	SURFACE ELEVATION:_				GEOLO	GY	N	MC	SA	AMPLE TYPE	REC	FIELI	) & L	ABORA	TORY	TESTS
FËÈT	MATERIAL						-11	IVIC	13	TYPE	IN.	WC	% #4	LL	PL	%-#20(
1 -	See boring J003 for mater	rai aescrip	otion						{}							
2 —									{}							
3 —	_								}							
4 —									}							
5 —									}							
6 —									}							
7 —									}							
8 -									}}							
9 -									}}							
11 -	D	C 1 1-	10													
12 -	Poor pressure meter test p and 12.3 feet	eriormea c	etween 10.	.8						COT						
13 —																
14 —	Marginal pressure meter to	ned between	n													
15 —	13.8 and 15.3 feet	P								COT						
16 –																
17 —	Good pressure meter test j	performed	between													
18 —	16.9 and 18.7 feet									COT						
19 —							52									
20 –	END OF BORING AT 2 Borehole backfilled with 1		t grout													
	Offset 4.5' north of J003-1	D														
	See borings J003-P and J	003-P2														
		1														
DEP	PTH: DRILLING METHOD			WATE SAMPL	ER LEVEL				1	DRILLI	NG	WATI		NOTE:		
0-14	4½' 4.25" HSA	DATE	TIME	DEPT	ED CASI H DEP	TH	DEI	E-IN PTH	FÍ	UID LE	VEL	WATI LEVE	EL	THE A		
											-		-,	SHEET EXPLA		
BORIN	NG LETED: <b>2/26/10</b>								$\vdash$		$\dashv$			ERMIN		
	A LG: <b>TDD</b> Rig: <b>51</b>										$\dashv$		$\dashv$		IS LO	



AET JO	OB NO: <b>07-04509</b>						LC	G OF	ВС	RING N	NO	J00	3-T	<b>(p.</b> ]	of 1	l)
PROJE	CT: PolyMet Nort	hmet M	ine; Hoy	yt La	kes	, MN										
DEPTH IN FEET	SURFACE ELEVATION:_				Gl	EOLOGY	N	MC	SA	AMPLE FYPE	REC	FIELI	) & L	ABORA	TORY	
FËÈT	MATERIAL	DESCRIPTI	ON				1	IVIC	וכו	ГҮРЕ	IN.	WC	% #4	LL	PL	q _u (psf)
1 — 2 — 3 — 4 —	3 Inch thinwall sample fro	om 1.5 to 3.	.5 feet.					М		TW	21.5					
5 — 6 — 7 — 8 —	3 Inch thinwall sample fro	om 5.0 to 7.	.0 feet.					M/W	12 12 12 12 12 12 12 12 12 12 12 12 12 1	TW	20.5	22	105			1160
9 — 10 — 11 — 12 — 13 —	Pitcher sampler from 10.0	to 13.0 fee	et.					М		TW	26.5	7	142			
15 — 16 — 17 — 18 — 19 — 20 —	Pitcher sampler from 15.0	et.					M	TT	TW	19	8 8	140 136				
21 – 22 –	Pitcher sampler from 20.0	to 23.0 fee	et.					M		TW	10.5					
23 —	END OF BORING AT 2 Borehole backfilled with r  Laboratory test results on by Barr; laboratory tests v Engineering Testing, Inc.	d il					<u> </u>									
DEP	PTH: DRILLING METHOD			WAT	ER L	EVEL MEA	SUR	EMEN	TS			•		NOTE:	REFE	R TO
0-	-20' 6 5/8" HSA	DATE	TIME	SAMPI DEPT	LED	CASING DEPTH	CAV DE	/E-IN PTH	FL	ORILLII UID LE	NG EVEL	WATI LEVE	ER EL	THE A	TTAC	HED
<u>_</u>														SHEET	TS FOF	R AN
	· a													EXPLA		
BORIN Compl	NG LETED: <b>2/23/10</b>													ΓERMIN		
DR: L	A LG: TDD Rig: 27C													TH	IS LO	Ĵ



Northing: 734378 Easting: 2896460 BARR JOB NO: 23/69-0C29.07 WA1A


AET JO	DB NO: <b>07-04509</b>			•			LO	G OF	ВО	RING N	1O	J0	10	(p. 1	of 1)	
PROJE	CT: PolyMet Nort	hmet M	ine; Hoy	t La	kes	, MN										
DEPTH IN FEET	SURFACE ELEVATION:_	1611.1			Gl	EOLOGY	N	MC	SA	MPLE YPE	REC			ABORA		-
FEET	MATERIAL I				\$				1	IPE	IN.	WC	% #4	LL	PL '	%-#200
1 - 2 -	FILL, a mixture of silty sa cobbles, and organic sandy brown and dark brown, fro	y silt with to zen above	race roots, about 12"		FIL	L		F/M	{} {}	SU						
3 –	FILL, a mixture of silty sa slightly organic silty sand, gray	dark brow	gravei, and n and dark				5	$\frac{M}{\sum}$	X	SS	7					
4 – 5 –	SILTY SAND WITH GRA	AVEL, bro	wn, moist	<b>'</b>			79	M	<u>[}</u>	SS	10	8				31
6 -							1)	171	<u> </u>	55	10					31
7 — 8 —							43	M	X	SS	2					
9 <del>-</del> 10 <del>-</del>	SILTY SAND, a little gradense (SM)	vel, dark g	ray, moist,		TIL	L	22		<u></u>	gg	0					22
11 –	,	A X / E Y 1	1				33	M	\ {}	SS	8					32
12 — 13 —	SILTY SAND WITH GRAmoist, very dense (SM)	AVEL, gar	k gray,				64	M	M	SS	15					
14 — 15 —						47/0.5'	M	<b>!</b>	SS	7						
16 –						50/0.3'	1 <b>V1</b>	<del>}</del>	33	,						
17 <del>-</del> 18 <del>-</del>							9/0.5' 23/0.5'	W	X1	SS	10					
_	Obstruction - possible bed AUGER REFUSAL AT		Г	_ <b> </b>	BEI	DROCK	50/0.2'		H							
	Borehole backfilled with r															
	Laboratory test results on by Barr; laboratory tests v Engineering Testing, Inc.	this log we were perfor	ere provide rmed by Soi	d il												
DEP	DEPTH: DRILLING METHOD				ER L	EVEL MEA	ASURI	EMEN	ITS			1		NOTE:	REFE	R TO
0-18	<b>0-18.7' 3.25" HSA</b> DATE TIM		TIME	SAMPI DEPT	LED TH	CASING DEPTH	CAV DEI	E-IN PTH	FL	ORILLIN UID LE	NG VEL	WATE LEVE	ER	THE A		
		2/16/10	9:45	18.2	2	18.7	15	5.0				3.8		SHEET		
DORRY	ODING		10:35	18.2	2	18.7	15	5.0				4.4		EXPLA		- 1
COMPI	G Leted: <b>2/16/10</b>											T	ERMIN			
DR: L	A LG: TDD Rig: 27C												TH	IS LO	J	



AET JO	DB NO: <b>07-04509</b>					LC	G OF	BOR	RING N	O	J01	0-P	(p. 1	of 1	)
PROJE	CT: PolyMet Nort	hmet M	ine; Ho	yt Lal	kes, MN										
DEPTH IN FEET	SURFACE ELEVATION:_				GEOLOGY	N	МС	SAI	MPLE YPE	REC IN.	FIELI		BORA	ГORY	TESTS
FËÈT	MATERIAL 1					1,	IVIC	T	YPE	IN.	WC	% #4	LL	PL	% <b>-</b> #200
1 — 2 — 3 — 4 —	See boring J010 for mater	зегенр						111111111111111111111111111111111111111							
5 —								}}							
6 — 7 —	Poor pressure meter test po and 7.3 feet	erformed b	etween 5.8	8		50 46	<u>_</u>		СОТ						
8 — 9 — 10 —						13/0.5 13/0.5 50/0.2	1	_ }	СОТ						
11 — 12 —						42		₹  }	СОТ						
13 — 14 — 15 —						117		स	СОТ						
16 —	END OF BORING AT 1 Borehole backfilled with r														
DEP	TH: DRILLING METHOD			WATE	R LEVEL ME	ASUR	L EMEN	ITS				L,	NOTE:	DEEL	рто
		DATE	TIME	SAMPL DEPT	ED CASING	CAV	/E-IN PTH	D	RILLIN JID LEV	G VEL	WATE LEVE	ER	THE A		
		13:00	8.0	5.0		.0				7.0		SHEET	S FOF	R AN	
DODE													EXPLA		
	G LETED: <b>2/25/10</b>								$\perp$		$ \mid$ ^T	ERMIN TH	IOLOC IS LOC		
DR: L	<b>A</b> LG: <b>TDD</b> Rig: <b>27C</b>											111	is LUC	J	



	05.04500								KK J(						
	OB NO: <b>07-04509</b>					LC	)G OF	BC	RING N	NO	<u>J01</u>	0-1	<b>(p.</b>	lot	1)
PROJE	CT: PolyMet Nort	thmet M	ine; Ho	<u>yt Lake</u>	s, MN										
DEPTH IN FEET	SURFACE ELEVATION:_				GEOLOGY	N	MC	SA	AMPLE ГҮРЕ	REC IN.	FIELI	D & L	ABORA	TORY	TESTS
FÉÈT	MATERIAL	DESCRIPTI	ON			11	IVIC		ГҮРЕ	IN.	WC	% #	4 LL	PL	%-#200
1 -								${}$							
2 –								1							
3 —	3 inch thinwall sample fro	m 2 0 to 4	0 feet				$\blacksquare$		TW	20					
4 —															
5 —								}							
6 –												125	,		
7 —	Pitcher sampler from 5.5 t	to 8.0 feet					M		TW	23	9 10	127	ı		
8 –											14	123	5		
9 –	Pitcher sampler from 8.0 t	o 10.5 feet					M		TW	14					
10 —															
11 -								{}							
12 –								{}							
13 –								{}							
14 – 15 –															
16 –	Pitcher sampler from 14.0	to 16.5 fee	et				M		TW	23					
10	END OF BORING AT 1							H							
	Borehole backfilled with 1	neat cemen	t grout												
	Offset 5.5' south-southwes	t of boring	J010												
	Laboratory test results on	this log we	ere provide	$_{ed}$											
	by Barr; laboratory tests the Engineering Testing, Inc.	were perfoi	rmed by So	pil											
	Engineering Testing, Inc.														
DEP	TH: DRILLING METHOD			WATER	LEVEL ME			NTS					NOTE:	REFE	ER TO
0-	-14' 6 5/8" HSA	DATE	TIME	SAMPLED DEPTH	CASING DEPTH	CAV	/E-IN PTH	FL	ORILLII JUID LE	NG EVEL	WATI LEVI	ER EL	THE A	TTAC	HED
		2/22/10	10:25	10.5	5.5	8	.0				3.5		SHEE		
Dorr													EXPLA		
BORIN COMPI	IG Leted: <b>2/22/10</b>												TERMI		
DR: L	A LG: TDD Rig: 27C												TH	IIS LO	ن



Northing: 735628 Easting: 2897327 BARR JOB NO: 23/69-0C29.07 WA1A

No	rthing: 73	35628 E	Casting	2897327			BARR	JOB N	O: 2	3/69-(	)C29.	07 W	AlA
AET JOB NO: <b>07-04509</b>					LC	G OF	BORING	NO	<u>J0</u>	27 (	<b>p.</b> 1	of 1)	)
PROJECT: PolyMet Nort	hmet M	ine; Ho	yt Lak	kes, MN									
DEPTH SURFACE ELEVATION: FEET MATERIAL	1607.6			GEOLOGY	N	MC	SAMPL TYPE	E REC	FIELI		BORA	TORY	TESTS
					11	IVIC	TYPE	IN.	WC	% ORG	LL	PL	<b>%</b> -#200
PEAT, sapric, dark brown 1 – 12" (PT)	, frozen ab	ove about	3.2.5			F/M	SU						
2 –			7.E.F										
3 –			7.E.F		2	M	ss	2					
4 –				SWAMP DEPOSIT			<b>T</b>						
5 —			3.E.F	DELOSIT	<1	M	M ss	8	287	52.8			
6 —			342				प्त						
7 ORGANIC SILT, brown (	OL)					> # (XX	A						
8 – SILTY SAND, a little gra (SM)		ray, wet			6	M/W	SS	9					
SILTY SAND WITH GR.	AVEL, dar	k gray,	-				[1]						
10 — moist with wet lenses, me	dium dense	e (SM)			20	M/W	X  ss	1					
11 -						$ \mathbf{Y} $	[]						
12 – 13 – GD AMEN AN GW TIN GAN					24	M/W	$\sqrt{\mathbf{S}}$ ss	8	7				21
GRAVELLY SILTY SAN 14 – dark gray, moist, medium	ID, appared dense to ve	nt cobbles, erv dense				$  \sum$	H						
$\begin{array}{ c c c }\hline & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $		ory delise			20	_ 	SS SS						
16 –				TILL	30	M	55	3					
17 —													
18 —					53	M	ss	16					
19 —							<b>}</b>						
20 – SILTY SAND WITH GR	AVEL apr	parent			48	M	$\sqrt{}$ ss	8					
cobbles, gray, moist to we							R						
22 —					15	W	SS SS	18	7				31
23 –					13	l vv		10	'				31
AUGER REFUSAL AT	24 5 EEET	r			70/0.1	W	⅓ ss	1					
SAMPLER REFUSAL A Borehole backfilled with r	<b>AT 24.6 FE</b>	EET			, ,, ,, ,,								
Laboratory test results on	this log we	ere provide	ed										
by Barr; laboratory tests v Engineering Testing, Inc.	were perfor	mea by So	011										
DEPTH: DRILLING METHOD				R LEVEL MEA							NOTE:	REFE	ER TO
0-24½' 3.25" HSA	DATE	TIME	SAMPL: DEPTI	ED CASING H DEPTH	CAV	/E-IN PTH	DRILI FLUID I	ING EVEL	WAT! LEVE	ER   EL	THE A	TTAC	HED
	2/17/10	11:18	24.6	24.5	17	7.8			14.0	,	SHEET		
DODING	2/17/10	11:36	24.6	24.5	17	7.7			11.7		EXPLA		
BORING COMPLETED: <b>2/17/10</b>										T			GY ON
DR: <b>LA</b> LG: <b>TDD</b> Rig: <b>27</b> C											111	IS LO	u



AET JO	OB NO: <b>07-04509</b>						LC	G OF		RING N				(p. 1		
PROJE		hmet M	ine; Hoy	t La	kes,	, MN					_			1		
DEPTH IN FEET	SURFACE ELEVATION: MATERIAL					EOLOGY	N	МС	SĄ	AMPLE ГҮРЕ	REC IN.	FIELI	0 & LA % #4	ABORA'		TESTS %-#20(
FEEI	See boring J027 for mater								И			WC	70 # <del>4</del>	LL	ГL	/0 <b>-</b> #20(
1 -	See John John Mater	iai aeserip	uon						ß							
2 –									}							
3 —									}							
4 —									}							
5 —									$\mathbb{R}$							
6 –										СОТ						
7 —																
8 —										COT						
9 –																
10 -	Poor pressure meter test p	erformed b	etween 10.	2						СОТ						
11 – 12 –	and 11.7 feet									COT						
13 –	Poor pressure meter test p	erformed b	etween 12	6												
14 –	and 14.1 feet									COT						
15 —	END OF DODDING AT A	# 0 DDD#														
	END OF BORING AT 1 Borehole backfilled with 1		t grout													
	See boring J027-P2															
	See boring 3027-12															
DEP	PTH: DRILLING METHOD					EVEL MEA			_					NOTE:	REFE	R TO
	DATE TIME				LED H	CASING DEPTH	CAV DE	E-IN PTH	FL	ORILLIN LUID LE	NG VEL	WATE LEVE	ER EL	THE A	TTAC	HED
														SHEET		
BORIN	IC													EXPLA		
COMPI	LETED: 2/25/10				_								-	ERMIN TH	IS LO	
DR: L	<b>A</b> LG: <b>TDD</b> Rig: <b>27</b> C												111	ID LO	٠	



AET JO	OB NO: <b>07-04509</b>						LO	G OF		RING N				(p.		
PROJE		hmet M	ine; Ho	yt Lal	kes, M	IN										
DEPTH IN FEET	SURFACE ELEVATION:_				GEOLO	OGY	N	МС	SA	AMPLE ГҮРЕ	REC	FIELI	ı	BORA	TORY	TESTS
FËÈT	MATERIAL						1,	ivic		TYPE	IN.	WC	% #4	LL	PL	% <b>-</b> #200
1 - 2 -	See boring J027 for mater	iai aeserip	uon						}} }}							
3 -									<u>}</u>							
4 -									<u>}</u>							
5 —																
6 –																
7 -																
8 – 9 –										COT						
10 -	Poor pressure meter test p and 10.9 feet	erformed b	etween 9.1													
11 -																
12 —																
	END OF BORING AT 1 Borehole backfilled with a	2.5 FEET auger cutting	1 <b>2</b> S													
	Offset 5' southeast of boris		-8-													
	See boring J027-P															
DEP	TH: DRILLING METHOD			WATE	ER LEVE	L MEA	L ASURI	L EMEN	ITS					NOTE:	REEE	R TO
Δ.	41/1 2 25!! TIC 4	DATE	TIME	SAMPL DEPT	ED CAS	SING PTH	CAV	Æ-IN PTH	Ei	DRILLIN LUID LE	NG VEI	WATI LEVE	ER	THE A		
U-4	4½' 3.25" HSA			PELL	II DE	4 111	וטעו	. 111	1.1	OID LE	V LiL	LL V E		SHEET	S FOI	R AN
													<b></b> ⊢	EXPLA	NATIO	ON OF
BORIN COMPI	IG LETED: <b>2/25/10</b>												T	ERMIN	OLOC	GY ON
	A LG: TDD Rig: 51													TH	IS LO	3



AET JO	DB NO: <b>07-04509</b>					LC	G OF		RING N				(p. 1		
PROJE	CT: PolyMet Nort	hmet M	ine; Ho	yt Lak	es, MN										
DEPTH	SURFACE ELEVATION:				GEOLOGY	N	MC	SA	AMPLE	REC	FIELI	) & L	ABORA	TORY	TESTS
DEPTH IN FEET	MATERIAL 1	DESCRIPTI	ON			N	MC		AMPLE FYPE	ĪN.	WC	% #4	LL LL	PL	q _u (psf)
1 -							M	{{							
2 —	2: 14: 11 1.0	1.5.	5.0						TOWN	1					
3 —	3 inch thinwall sample fro	m 1.5 to 3.	.5 feet.				M		TW	1					
4 -								1							
5 —	3 inch thinwall sample fro	m 4.5 to 6.	.5 feet.				M		TW	14.5	310	17			560
6 -	•							III							
7 – 8 –								}}							
9 –								<u>}</u>							
10 -								1							
11 -	Pitcher sampler from 10.0	to 12.5 fee	et .				M		TW	22	9 8	140			
12 —	Thener sampler from 10.0	10 12.5 100	J.				1,1		2 ,,		8 8	141 140			
13 —								<b>}</b>							
14 —	Pitcher sampler from 15.0	to 15.1 fac	at					<b>{</b> {							
15 —	PITCHER SAMPLER R							ħ	TW	0-					
	<b>FEET</b> Borehole backfilled with r	neat cemen	t grout												
			C												
	Offset 8' northeast of bori	ng J027													
	Laboratory test results on	this log w	ere provide	nd											
	by Barr; laboratory tests v	vere perfo	rmed by So	pil											
	Engineering Testing, Inc.														
DED	THE DRIVE DISCOUNTED			WATER	LEVEL VC	A CILIE		ITC							
DEP	TH: DRILLING METHOD	DATE	TD C	SAMPLE	LEVEL MEAD CASING			1	ORILLI	NG	WATE		NOTE:		
0-	15' 6 5/8" HSA	DATE	TIME	DEPTH	D CASING DEPTH	DE	E-IN PTH	FL	UID LE	EVEL	WATI LEVE	EĹ	THE A		
												$\dashv$	EXPLA		
BORIN	G LETED: <b>2/19/10</b>												ΓERMIN		
	A LG: <b>TDD</b> Rig: <b>27C</b>												TH	IS LO	3



											KK JC						
AET JO	OB NO:	07-04509						LC	OG OF	ВО	RING N	Ю	J02'	7-T2	2 (p.	1 of	1)_
PROJE	CT:	PolyMet Nort	hmet M	ine; Ho	yt Lal	kes, N	<u>AN</u>										
DEPTH	SURI	FACE ELEVATION:			GEOLG		OGY		MG	SA	MPLE	REC	FIELI	) & L	LABORATORY T		TESTS
DEPTH IN FEET		MATERIAL I	DESCRIPTION	ON		GLOI	2001	N	MC		MPLE TYPE	IN.	WC	% #4	LL	PL	%-#200
1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 10 - 11 - 12 - 13 - 13 - 10 - 11 - 12 - 13 - 10 - 11 - 11 - 11 - 11 - 11 - 11	Pitche  END (  Borehauger	r sampler from 10 to  OF BORING AT 1: ole backfilled with recuttings  7' north-northeast of	m 1.5 to 3.  o 13 feet  3.0 FEET eat cemen	5 feet.				IN	W/M	}	TW	13 0	405	13	LL	PL	%-#20 <b>0</b>
DER	by Bar Engind	atory test results on r; laboratory tests veering Testing, Inc.	this log we vere perfor	ere provide rmed by So	il	ED LEVA	EL ME	QUID	EMEN	TTC.							
DEPTH: DRILLING METHOD						ER LEVI				_	יי דומי	ıc	W/A Tri		NOTE:		
0-10' 6 5/8" HSA		DATE	TIME	SAMPL DEPT	H D	ASING EPTH	DE	/E-IN PTH	FL	ORILLIN UID LE	VEL	WATI LEVE	EK EL	THE A			
															SHEET		
Dorn															EXPLA		
BORIN COMPI	G LETED:	2/19/10												1	TERMIN		
DR: L	A LG:	TDD Rig: 27C													TH	IS LO	3



Northing: 737624 Easting: 2898282 BARR JOB NO: 23/69-0C29.07 WA1A

Northing: 737624 Easting: 2898282 BARR JOB NO: 23/69-0C29.07 WA1A														
AET JOB NO:											p. 1	of 1)	)	
PROJEC	CT: PolyMet Nort	hmet M	ine; Hoy	t Lal	kes, MN									
DEPTH IN FEET	SURFACE ELEVATION:_	1609.8 GEOLOGY					MC	SAMPLI TYPE	REC	FIELD & LABORATORY TESTS				
FEET	MATERIAL I				TOPSOIL	·		TYPE	IN.	WC	% #4	LL	PL	<b>%-#20</b>
1 -	ORGANIC SILT WITH R frozen (OL)				TOPSOIL		F/M	$\{\}\}$ SU						
2 —	SANDY SILT, trace roots brown, frozen above about	, apparent 1	boulders,											
3 —	SILTY SAND, a little grav	vel, appare	nt cobbles,	¹		14	M	$\bigvee$ ss	11					
4 —	trace roots, brown and ora \( \text{moist} (SM) \)			/										
5 —	SILTY SAND WITH GRA	AVEL, gra	yish brown	ι,		50/0.5' 50/0.4'		X SS	0					
6 –	110101 (2111)				TILL			}}						
7 +	SILTY SAND, a little gray					25/0.5' 50/0.1'		SS	4					
8 – 9 –	grayish brown, moist, met	num dense	(SIVI)											
10 –						2.5			1.0					
11 -						25	M	SS	10	8				33
12 —						25/0.5'	M	$\stackrel{\text{\figure}}{\times}$ ss						
-	Obstruction - possible wea				WEATHEREI ROCK	50/0.2	M	55	6					
	AUGER REFUSAL AT Borehole backfilled with r				KOCK									
	Laboratory test results on by Barr; laboratory tests v Engineering Testing, Inc.													
DEP'	TH: DRILLING METHOD			WATI	ER LEVEL MEA	ASURI	EMEN	TS			N	NOTE:	REFE	ER TO
0-12	2.9' 3.25" HSA	DATE	TIME	SAMPL DEPT	ED CASING H DEPTH	CAV	Æ-IN PTH	DRILL FLUID L	ING EVEL	WATI LEVE		ГНЕ А		
0-12	ii) Jimo Hua	2/17/10	14:25	12.7			2.0			Non	<del></del>	SHEET	rs foi	R AN
														ON OF
BORIN COMPI	G LETED: <b>2/17/10</b>										TI			GY ON
DR: LA	A LG: TDD Rig: 27C											ТН	IS LO	ن
6/06														

### **BORING LOG NOTES**

DR	ILLING AND SAMPLING SYMBOLS		TEST SYMBOLS
Symbol	Definition	Symbol	Definition
B,H,N:	Size of flush-joint casing	CONS:	One-dimensional consolidation test
CA:	Crew Assistant (initials)	DEN:	Dry density, pcf
CAS:	Pipe casing, number indicates nominal diameter in	DST:	Direct shear test
	inches	E:	Pressuremeter Modulus, tsf
CC:	Crew Chief (initials)	HYD:	Hydrometer analysis
COT:	Clean-out tube	LL:	Liquid Limit, %
DC:	Drive casing; number indicates diameter in inches	LP:	Pressuremeter Limit Pressure, tsf
DM:	Drilling mud or bentonite slurry	OC:	Organic Content, %
DR:	Driller (initials)	PERM:	Coefficient of permeability (K) test; F - Field;
DS:	Disturbed sample from auger flights		L - Laboratory
FA:	Flight auger; number indicates outside diameter in	PL:	Plastic Limit, %
	inches	$q_p$ :	Pocket Penetrometer strength, tsf (approximate)
HA:	Hand auger; number indicates outside diameter	$q_c$ :	Static cone bearing pressure, tsf
HSA:	Hollow stem auger; number indicates inside diameter	$q_u$ :	Unconfined compressive strength, psf
	in inches	R:	Electrical Resistivity, ohm-cms
LG:	Field logger (initials)	RQD:	Rock Quality Designation of Rock Core, in percent
MC:	Column used to describe moisture condition of		(aggregate length of core pieces 4" or more in length
	samples and for the ground water level symbols		as a percent of total core run)
N (BPF):	Standard penetration resistance (N-value) in blows per	SA:	Sieve analysis
	foot (see notes)	TRX:	Triaxial compression test
NQ:	NQ wireline core barrel	VSR:	Vane shear strength, remoulded (field), psf
PQ:	PQ wireline core barrel	VSU:	Vane shear strength, undisturbed (field), psf
RD:	Rotary drilling with fluid and roller or drag bit	WC:	Water content, as percent of dry weight
REC:	In split-spoon (see notes) and thin-walled tube sampling, the recovered length (in inches) of sample.	%-200:	Percent of material finer than #200 sieve
	In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no	ST	ANDARD PENETRATION TEST NOTES
	sample recovered.	The stand	lard penetration test consists of driving the sampler with
REV:	Revert drilling fluid		and hammer and counting the number of blows applied in
SS:	Standard split-spoon sampler (steel; 13/8" is inside		aree 6" increments of penetration. If the sampler is driven
	diameter; 2" outside diameter); unless indicated		18" (usually in highly resistant material), permitted in
	otherwise		1586, the blows for each complete 6" increment and for
SU	Spin-up sample from hollow stem auger		ial increment is on the boring log. For partial increments,

h n n n each partial increment is on the boring log. For partial increments, the number of blows is shown to the nearest 0.1' below the slash.

The length of sample recovered, as shown on the "REC" column, may be greater than the distance indicated in the N column. The disparity is because the N-value is recorded below the initial 6" set (unless partial penetration defined in ASTM:D1586 is encountered) whereas the length of sample recovered is for the entire sampler drive (which may even extend more than 18").

 $\nabla$ :

TW:

WH:

WR:

94mm:

WASH:

inches

Water level measured in borehole prior to abandonment

Thin-walled tube; number indicates inside diameter in

Sample of material obtained by screening returning

rotary drilling fluid or by which has collected inside

Sampler advanced by static weight of drill rod and

the borehole after "falling" through drilling fluid

Sampler advanced by static weight of drill rod

94 millimeter wireline core barrel

140-pound hammer

Interim water level measurement or estimated water

level based on sample appearance

### UNIFIED SOIL CLASSIFICATION SYSTEM ASTM Designations: D 2487, D2488

### **AMERICAN ENGINEERING** TESTING, INC.



				Ç	Soil Classification	N
Criteria fo	or Assigning Group Sy	mbols and Group Nar	mes Using Laboratory Tests ^A	Group Symbol	Group Name ^B	ABased on the mater (75-mm) sieve.
Coarse-Grained Soils More	Gravels More than 50% coarse	Clean Gravels Less than 5%	Cu≥4 and 1≤Cc≤3 ^E	GW	Well graded gravel ^F	^B If field sample cont boulders, or both, a
than 50% retained on	fraction retained on No. 4 sieve	fines ^C	Cu<4 and/or 1>Cc>3 ^E	GP	Poorly graded gravel ^F	boulders, or both" to
No. 200 sieve	on ito. I sieve	Gravels with Fines more	Fines classify as ML or MH	GM	Silty gravel ^{F.G.H}	symbols: GW-GM well-gra
		than 12% fines ^C	Fines classify as CL or CH	GC	Clayey gravel ^{F.G.H}	GW-GC well-gra
	Sands 50% or more of coarse	Clean Sands Less than 5%	$Cu \ge 6$ and $1 \le Cc \le 3^E$	SW	Well-graded sand ¹	GP-GC poorly gr DSands with 5 to 129
	fraction passes No. 4 sieve	fines ^D	Cu<6 and 1>Cc>3 ^E	SP	Poorly-graded sand ^I	symbols: SW-SM well-gra
	rto. I sieve	Sands with Fines more	Fines classify as ML or MH	SM	Silty sand ^{G.H.I}	SW-SC well-grad SP-SM poorly gra
		than 12% fines ^D	Fines classify as CL or CH	SC	Clayey sand ^{G.H.I}	SP-SC poorly gra
Fine-Grained Soils 50% or	Silts and Clays Liquid limit less	inorganic	PI>7 and plots on or above "A" line ^J	CL	Lean clay ^{K.L.M}	
more passes the No. 200	than 50		PI<4 or plots below "A" line	ML	Silt ^{K.L.M}	$^{E}Cu = D_{60} / D_{10},$ (
sieve		organic	Liquid limit-oven dried <0.75	OL	Organic clay ^{K.L.M.N}	FIf soil contains ≥15
(see Plasticity Chart below)			Liquid limit – not dried		Organic silt ^{K.L.M.O}	sand" to group name
	Silts and Clays Liquid limit 50	inorganic	PI plots on or above "A" line	СН	Fat clay ^{K.L.M}	symbol GC-GM, or ^H If fines are organic,
	or more		PI plots below "A" line	МН	Elastic silt ^{K.L.M}	fines" to group name  If soil contains >159
		organic	Liquid limit-oven dried <0.75	ОН	Organic clay ^{K.L.M.P}	gravel" to group nan ^J If Atterberg limits p
			Liquid limit – not dried		Organic silt ^{K.L.M.Q}	soils is a CL-ML silt
Highly organic soil			Primarily organic matter, dark in color, and organic in odor	PT	Peat ^R	KIf soil contains 15 t add "with sand" or " whichever is predom
Screen Opening	SIEVE ANALYSIS (in.) Sieve Number (in.) 4 .10 .20 .40 .60 .140 .2	.o	For classification of fine-grained soils and fine-grained fraction of coarse-grained soils 50 – Equation of "A"-line Horizontal at PI = 4 to LL = 25.5. the PI = 0.73 (LL-20)	strik OH		LIf soil contains ≥30 predominantly sa group name.  MIf soil contains ≥30 predominantly gr
٥.80		.20	40 Equation of "U"-line	1 10		to group name.  NPI>4 and plots on o

Notes	
Based on the material passing the 3-in	
75-mm) sieve.	

tained cobbles or add "with cobbles or group name. 2% fines require dual

aded gravel with silt ded gravel with clay raded gravel with silt raded gravel with clay

% fines require dual

ded sand with silt aded sand with silt aded sand with clay

$2$
Cu = D₆₀ /D₁₀, Cc =  $\frac{(D_{30})^{2}}{D_{10} \times D_{60}}$ 

% sand, add "with

CL-ML, use dual SC-SM.

add "with organic

% gravel, add "with

olot is hatched area,

ty clay. to 29% plus No. 200 "with gravel", ninant.

% plus No. 200, and, add "sandy" to

% plus No. 200, avel, add "gravelly"

NPI≥4 and plots on or above "A" line.

OPI<4 or plots below "A" line.

PPI plots on or above "A" line.

OPI plots below "A" line.

OPI plots below "A" line.

RFiber Content description shown below.

						0.2			٥.٠						
		-Sa	reen	Op	ening	(in.)-	$\vdash$	Sie	eve N	umber-			+		
		32	.1%	1 .3	4	% .	À	.10	20	.40 £	30 ,	140 2			
	,100	Ν		Ш									. 0		
		H	4	Н		$\vdash$	$\vdash$		+	+		+	1		
	,80	Ш	$\Lambda$	Ц								4	.20		
(D	.00		1	l l									.20	Ω	
<u></u>		Н	$^{+}$	М			<del></del>	1	T	$\top$		$\top$	1	뿔	
ŝ	.60	Н	+	Н	<del>\-</del>	,D60	= 15n	nm	$\vdash$	$\vdash$		+	.40	¥	
PERCENT. PASSING				Ш	$\Lambda$									PERCENT RETAINED	
뉟		П	Т	П	_				П			Т		<u></u>	
빙	.40	Н	+	Н	_	+	$\vdash$		+	+		+	.60	É	
Œ.		Ш	$\perp$	Ц			$\triangleright$	.D30 :	2.5	mm		4		Ä.	
Δ.				Ш			1	$\setminus$	]					풉	
	.20	H	$^{+}$	Н			_			₹		+	.80		
		Н	+	Н				-	╄	$\perp$	/	$\rightarrow$	r	$O_{10} = 0.075r$	nm
				Ш									Į.		
	. 0	닠				luuu m			h	0.5	_	0.1	1.100		
		50				-	-								
			PA	۱R'	TICL	E S	IZE 1	N MI	LLIN	1ETE	RS				
	,	. 1	D ₆₀		.15	200		.C₀ = <u>.</u> D	(D30) ²		2.5	2	E 0		
	,	Ju = 7	D10	0,=	.075	= 200		ω= _D	10 X D	0.0	075 x	15	= 5.0		

	For classification of fine-grained soils and fine-grained fraction of coarse-grained soils.
DEX (PI)	Equation of 'A'-line Legation of 'A'-line Horizontal at Pi = 4 to LL = 25.5. then Pi = 0.73 (LL-20)
PLASTICITY INDEX (PI)	Equation of "U"-line Vertical at LL = 16 to PI = 7. then PI = 0.9 (LL-8)
PLASTI	
	10 4 4
	0.0 10 16 20 30 40 50 80 70 80 90 100 110 LIQUID LIMIT (LL)
	Plasticity Chart
	riasticity Chart
JOI (	GV NOTES USED BY A ET FOR SOIL IDENTIFICATION AND DES

	ADDITIONAL TERMINOLOGY NOTES USED BY AET FOR SOIL IDENTIFICATION AND DESCRIPTION											
	Grain Size	Gravel I	Percentages	Consistenc	y of Plastic Soils	Relative Density of Non-Plastic Soils						
<u>Term</u>	<u>Term</u> <u>Particle Size</u>		<u>Term</u> <u>Percent</u>		N-Value, BPF	<u>Term</u>	N-Value, BPF					
Boulders			3% - 14% 15% - 29%	Very Soft	less than 2	Very Loose						
Cobbles Gravel	3" to 12" #4 sieve to 3"	With Gravel Gravelly	30% - 50%	Soft Firm	2 - 4 5 - 8	Loose Medium De	5 - 10 ense 11 - 30					
Sand	#200 to #4 sieve			Stiff	9 - 15	Dense	31 - 50					
Fines (silt & cl	lay) Pass #200 sieve			Very Stiff	16 - 30	Very Dense	Greater than 50					
				Hard	Greater than 30							
Mo	isture/Frost Condition	Layer	ing Notes	Fiber C	ontent of Peat	Organic/Roots Description (if no lab tests)						
	(MC Column)	Laminations: I	Layers less than		Fiber Content	Soils are described as <i>organic</i> , if soil is not peat						
D (Dry):	Absense of moisture, dusty, dry to	½" thick of		Term	m (Visual Estimate)		and is judged to have sufficient organic fines					
	touch.		differing material			content to influence the soil properties. Slightly						
M (Moist):	Damp, although free water not		or color.	Fibric Peat:	bric Peat: Greater than 67%		for borderline cases.					
	visible. Soil may still have a high			Hemic Peat:	33 - 67%							
	water content (over "optimum").	Lenses:	Pockets or layers	Sapric Peat:	Less than 33%	With roots:	Judged to have sufficient quantity					
W (Wet/	Free water visible intended to		greater than 1/2"				of roots to influence the soil					
Waterbearing):	: describe non-plastic soils.	į į	thick of differing				properties.					
	Waterbearing usually relates to	1	material or color.			Trace roots:	Small roots present, but not judged					
	sands and sand with silt.						to be in sufficient quantity to					
F (Frozen):	Soil frozen						significantly affect soil properties.					

### **GEOLOGIC TERMINOLOGY (SOILS)**

General categories of geologic deposits used, descriptive information and common soil types is as follows:

**FILL** (F): Soils, rock and/or waste products placed or disturbed by man rather than through geologic processes. Mixed soils are usually easy to identify. Uniform material is more difficult, and signs such as small inclusions, underlying topsoil, topography or knowledge of below grade improvements (e.g., basement backfill, utility trenches, etc.) may be needed to properly judge. When mixed condition is stratified horizontally, the soil may be a weathered natural soil rather than fill.

**TOPSOIL** (**TS**): Upper darker colored layer formed by weathering of inorganic soil and accumulation of organic material. Usually black, dark brown, dark gray or dark grayish brown. Often transitions from darker to lighter color.

**SLOPEWASH (SW):** Organic and/or inorganic materials (sometimes interlayered) washed from slopes and redeposited. Usually stratified. Will be located in depressed areas where they can be washed in from slopes. When topsoil layers are thick in depressed areas, there is a good chance the soil is slopewash.

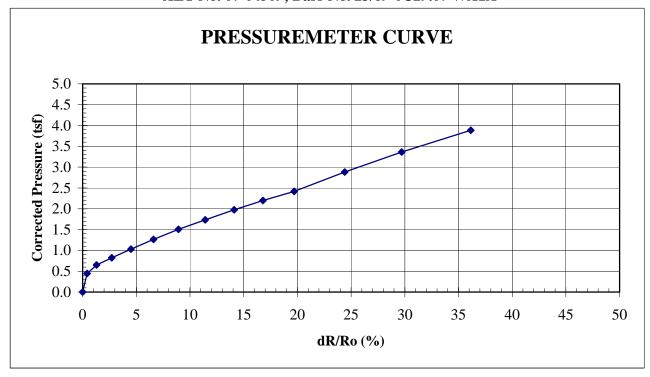
**SWAMP DEPOSITS (SD):** Highly organic material (peats and organic clays) which are formed through accumulation of organic material under water. **Peat, Organic clay** 

**COARSE ALLUVIUM (CA):** Sandy (and gravelly). Stratified. Deposited from fast moving waters in streams and rivers. Includes glacial outwash. **Sand, Sand with silt, Silty sand, Gravels** 

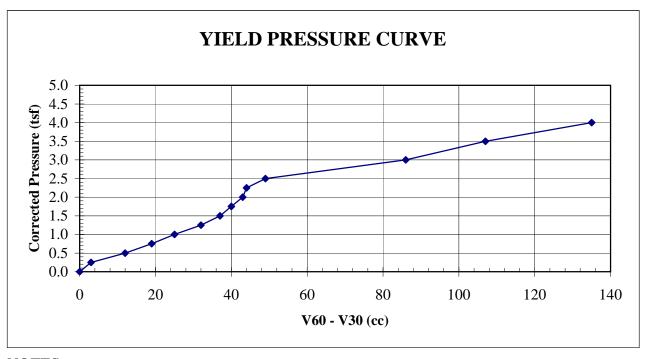
**FINE ALLUVIUM (FA):** Clayey and/or silty. Stratified. Deposited from slow moving waters in streams, rivers, lakes and ponds. Includes glacial outwash. **Lean clay, Fat clay, Silty clay, Silt, Sandy silt** 

MIXED ALLUVIUM (MA): Combination of Fine and Coarse Alluvium. Clayey sand, Sandy lean clay, interlayered CA/FA

**LACUSTRINE** (**LAC**): Fine grained lake bed deposits (lakes may or may not still be in existence). Usually in very flat topography. **Fat clay, Lean clay, Silty clay, Silt** 


**LOESS** (**LOESS**): Uniform, non-stratified, silty material (or very fine sand) which is deposited by wind. Can include significant clay content, and grain contacts may be cemented by clay or calcareous (limestone/chalky) material. **Silt, Sandy silt, Silty clay, Lean clay** 

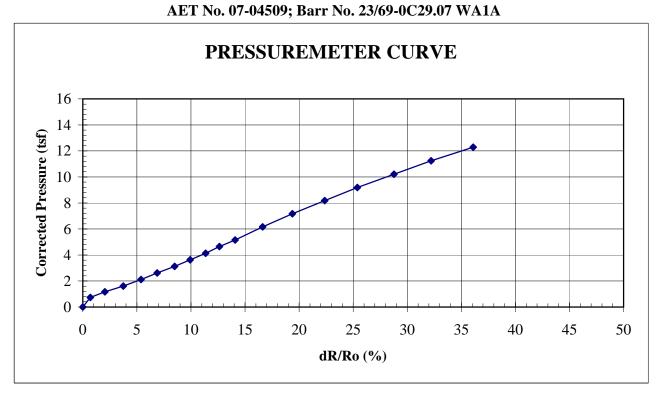
**TILL** (**T**): Normally contains a wide range of grain sizes, from boulders through clay. Usually non-stratified (not sorted through water action). Deposited directly from glaciers. **Silty sand, Clayey sand, Sandy lean clay,** usually contains **gravel** 


**WEATHERED TILL (WT):** Tills which have been altered by exposure to the action of frost, water, or chemicals. Often softer than underlying soils. May be stratified with varying colors/soil types due to filling in or other changes in frost lensed zones.

**COLLUVIUM (COL):** Dominantly gravel, boulders and rock slabs, sometimes intermixed or layered with soils. Deposited from gravity flow down hills or cliffs.

### PolyMet AET No. 07-04509; Barr No. 23/69-0C29.07 WA1A




 $\begin{array}{llll} Boring \ No.: \ J003 & P_L(tsf) = 4.0 & E_o(tsf) = 13 & E_o \ / \ P_l^* = 3.4 \\ Depth \ (ft): \ 3.1\text{-}4.6 & P_o(tsf) = 0.2 & N_{ave} \ (bpf) = 5 & E_o \ / \ N = 2.6 \\ Probe: \ N1 & P_L^*(tsf) = 3.8 & P_v(tsf) = 2.3 & P_v \ / \ P_l^* = 0.59 \end{array}$ 



**NOTES:** Points Used for E_o Calculation: 6 to 10

Marginal test; disturbed soil.

# PolyMet



Boring No. : J003

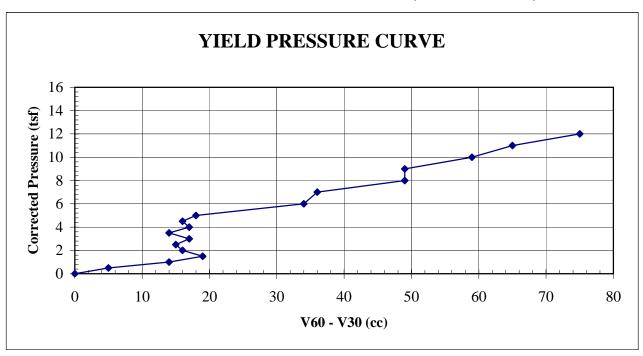
Depth (ft) : 6.1-7.6

Probe: N1

 $\begin{aligned} P_L(tsf) &= 12.0 \\ P_o(tsf) &= 0.5 \end{aligned}$ 

 $P_L*(tsf) = 11.5$ 

 $E_o(tsf) = 51$ 

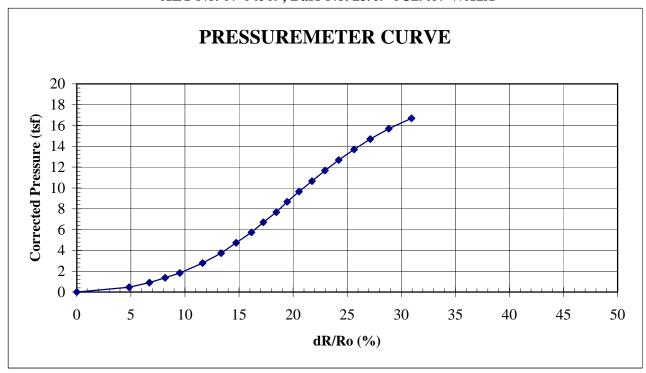

 $E_{o}/P_{l}*=4.4$ 

 $N_{ave}$  (bpf) = 33

 $E_o / N = 1.5$ 

 $\mathbf{P_{v}(tsf)} = 5.0$ 

 $P_{y}/P_{l}* = 0.43$ 




**NOTES:** 

Points Used for E_o Calculation: 5 to 11

Marginal test; disturbed soil.

### **PolyMet** AET No. 07-04509; Barr No. 23/69-0C29.07 WA1A



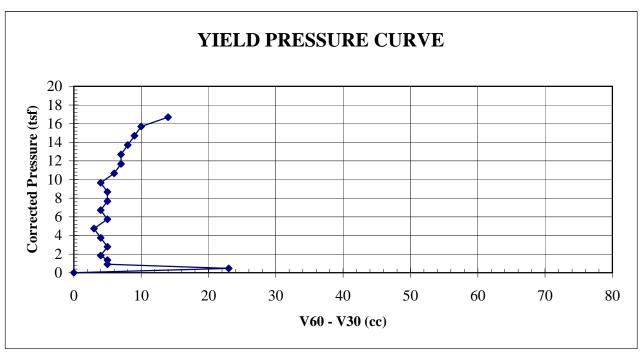
Boring No.: J003 Depth (ft): 6.6-8.4

Probe: A1

 $P_L(tsf) > 17.0$ 

 $\mathbf{P_o(tsf)} = \mathbf{0.5}$ 

 $P_L*(tsf) > 16.5$ 

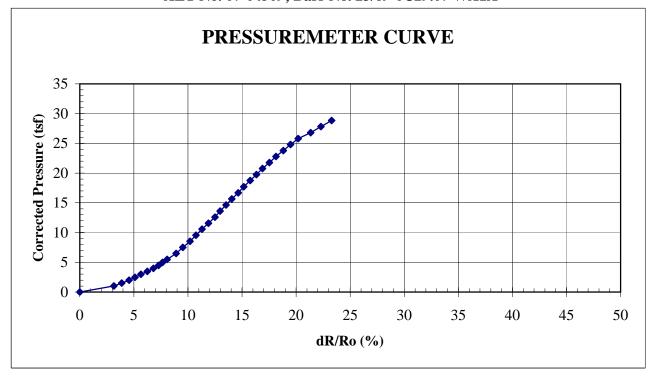

 $E_0(tsf) = 139$ 

 $N_{ave}$  (bpf) = 33

 $E_o / P_l^* = 8.4$  $E_0/N=4.2$ 

 $P_{v}(tsf) = 13.0$ 

 $P_{v}/P_{l}* = 0.79$ 




**NOTES:** 

Points Used for E_o Calculation: 9 to 16

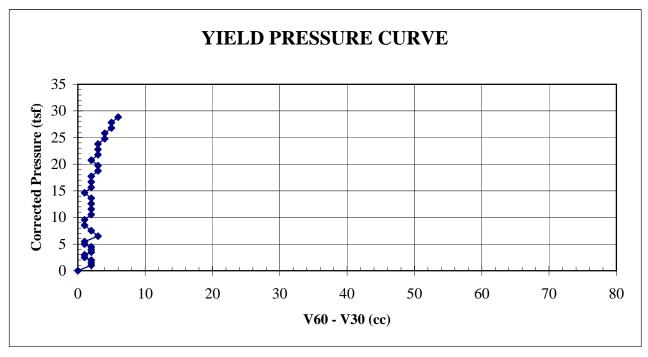
Good test; reached yield but not failure.

### PolyMet AET No. 07-04509; Barr No. 23/69-0C29.07 WA1A



Boring No. : J003

Depth (ft) : 21.6-23.4

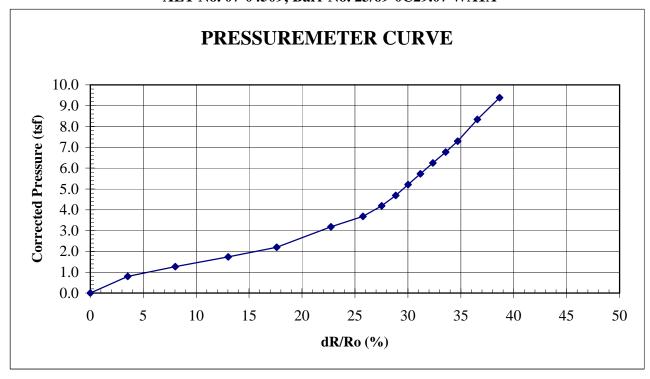

Probe : A1

 $P_L(tsf) > 30.0$  $P_0(tsf) = 1.5$   $E_o(tsf) = 264$   $N_{ave} (bpf) = 26$ 

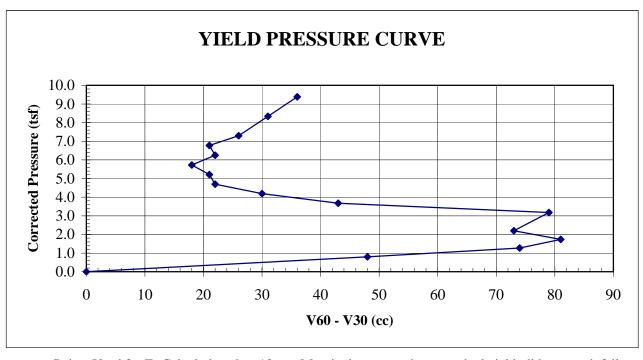
 $E_o / P_l^* = 9.3$  $E_o / N = 10.4$ 

 $P_{\rm L}*(tsf) > 28.5$   $P_{\rm y}(tsf) = 23.0$ 

 $P_y / P_l^* = 0.81$ 



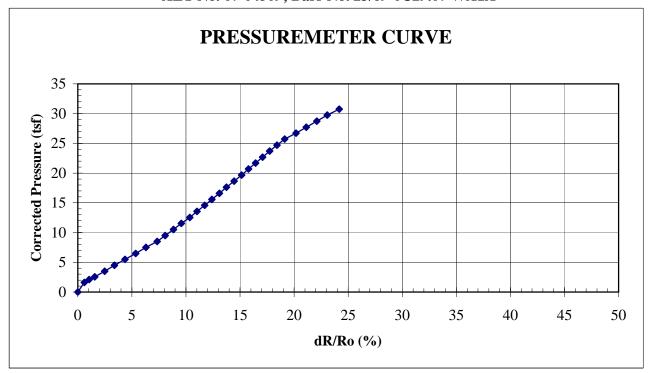

**NOTES:** 


Points Used for E_o Calculation: 14 to 28

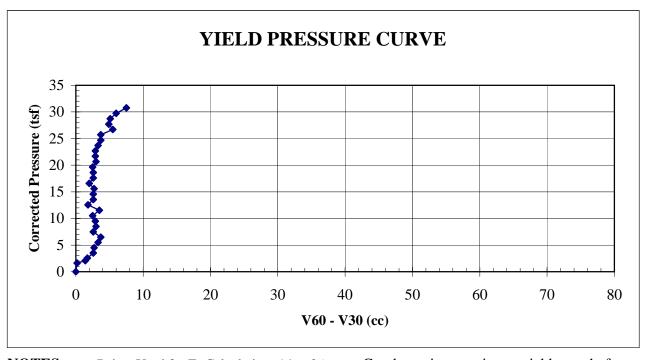
Good test; reached yield but not failure.

### PolyMet AET No. 07-04509; Barr No. 23/69-0C29.07 WA1A




 $\begin{array}{llll} Boring \ No.: \ J003 & P_L(tsf) > 10.0 & E_o(tsf) = 76 & E_o \ / \ P_l^* = 8.4 \\ Depth \ (ft): \ 13.8\text{-}15.3 & P_o(tsf) = 1.0 & N_{ave} \ (bpf) = 23 & E_o \ / \ N = 3.3 \\ Probe: \ N1 & P_L^*(tsf) > 9.0 & P_v(tsf) = 7.0 & P_v \ / \ P_l^* = 0.78 \end{array}$ 

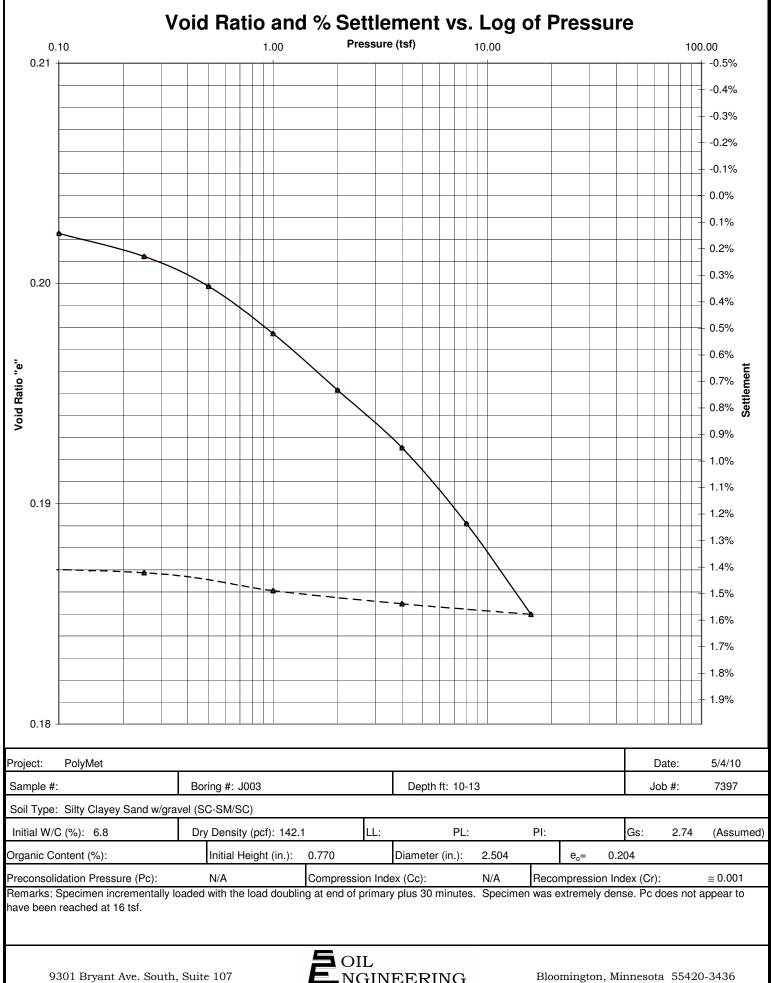



**NOTES:** Points Used for E_o Calculation: 9 to 13

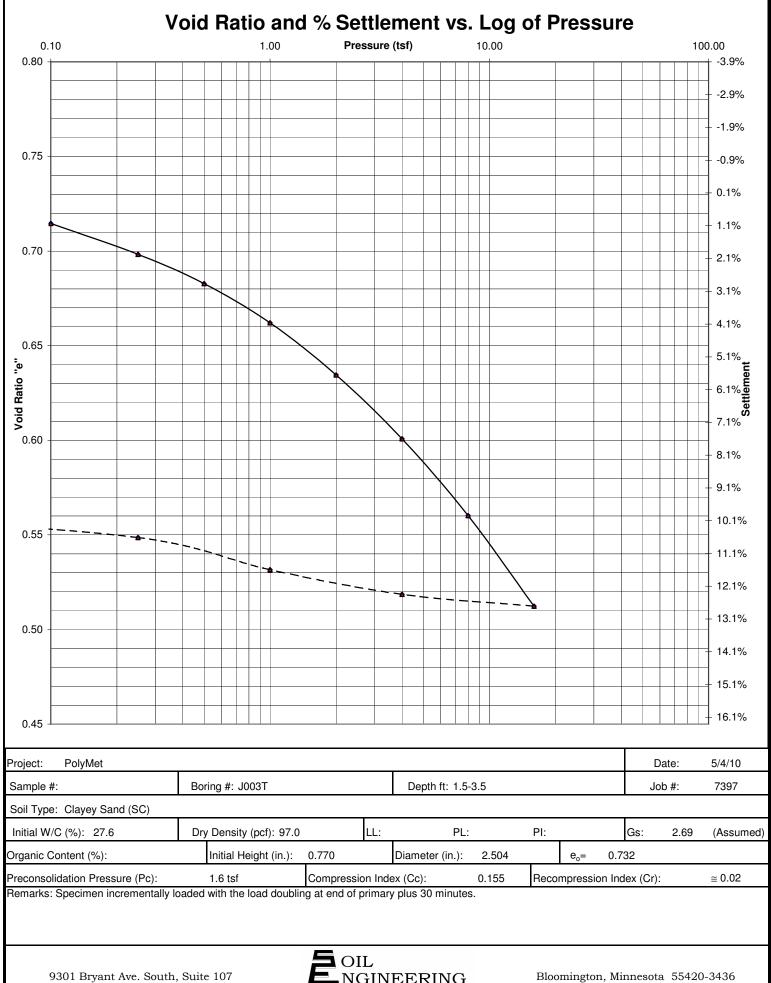
Marginal test: may have reached yield; did not reach failure.

### PolyMet AET No. 07-04509; Barr No. 23/69-0C29.07 WA1A

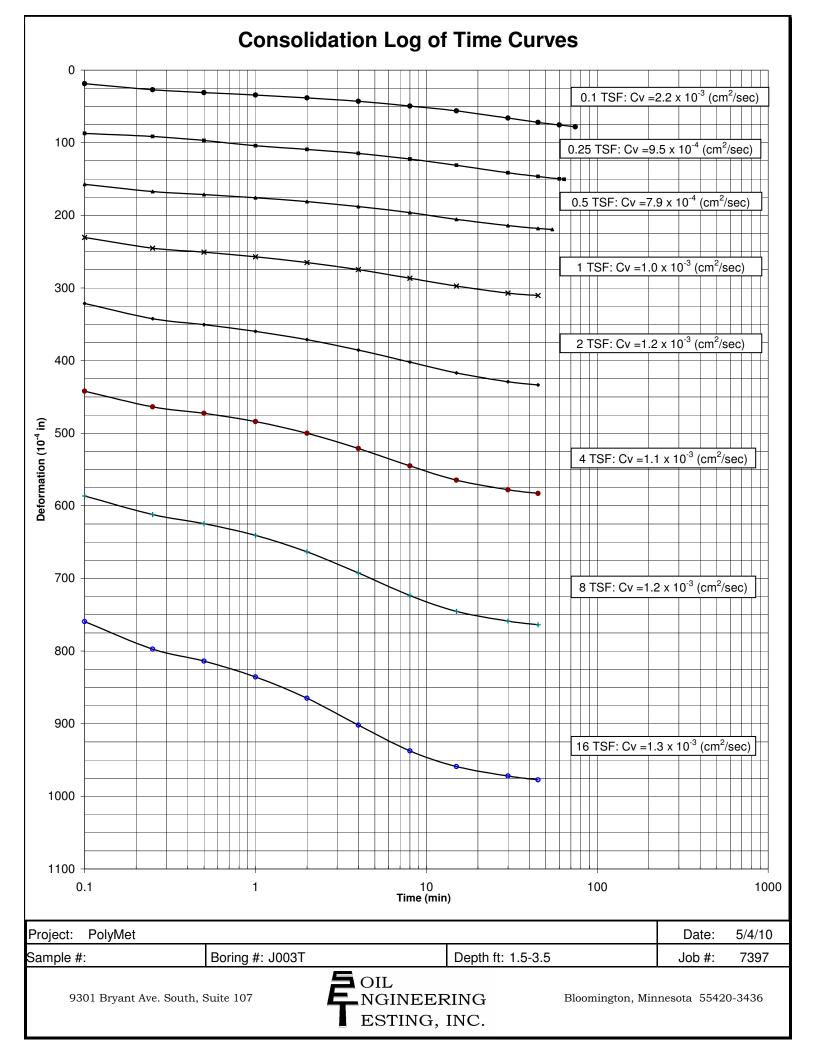


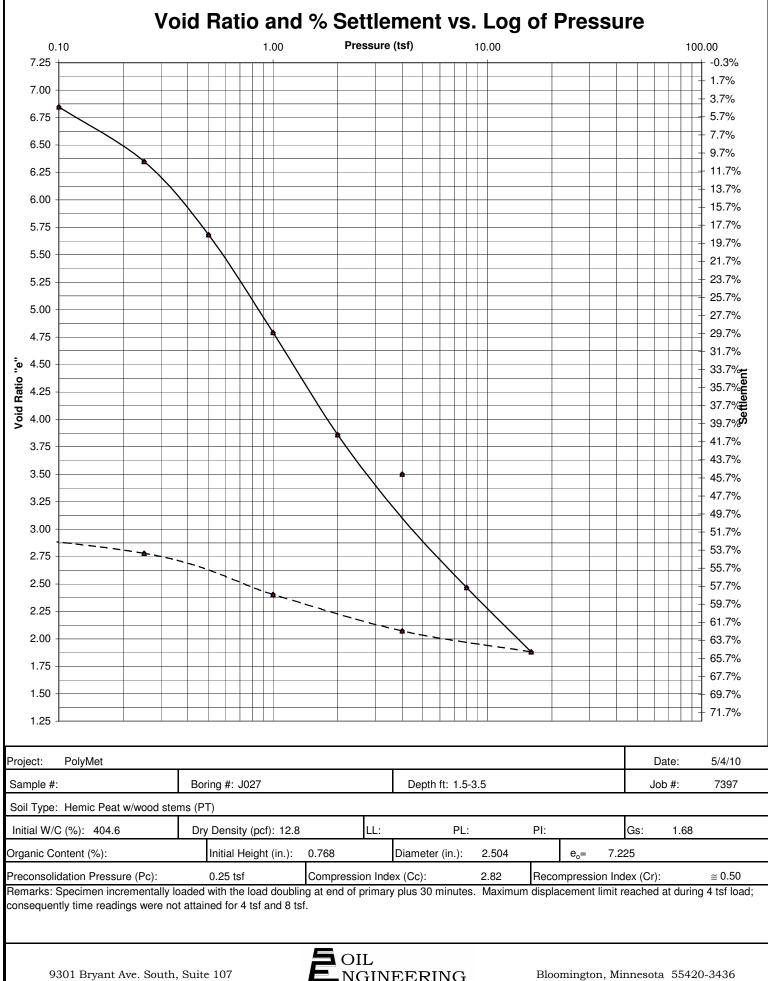

 $\begin{array}{llll} Boring \ No.: \ J003 & P_L(tsf) > 31.0 & E_o(tsf) = 229 & E_o \ / \ P_l^* = 7.6 \\ Depth \ (ft): \ 16.9\text{-}18.7 & P_o(tsf) = 1.0 & N_{ave} \ (bpf) = 46 & E_o \ / \ N = 5.0 \\ Probe: \ A1 & P_L^*(tsf) > 30.0 & P_y(tsf) = 26.0 & P_y \ / \ P_l^* = 0.87 \end{array}$ 



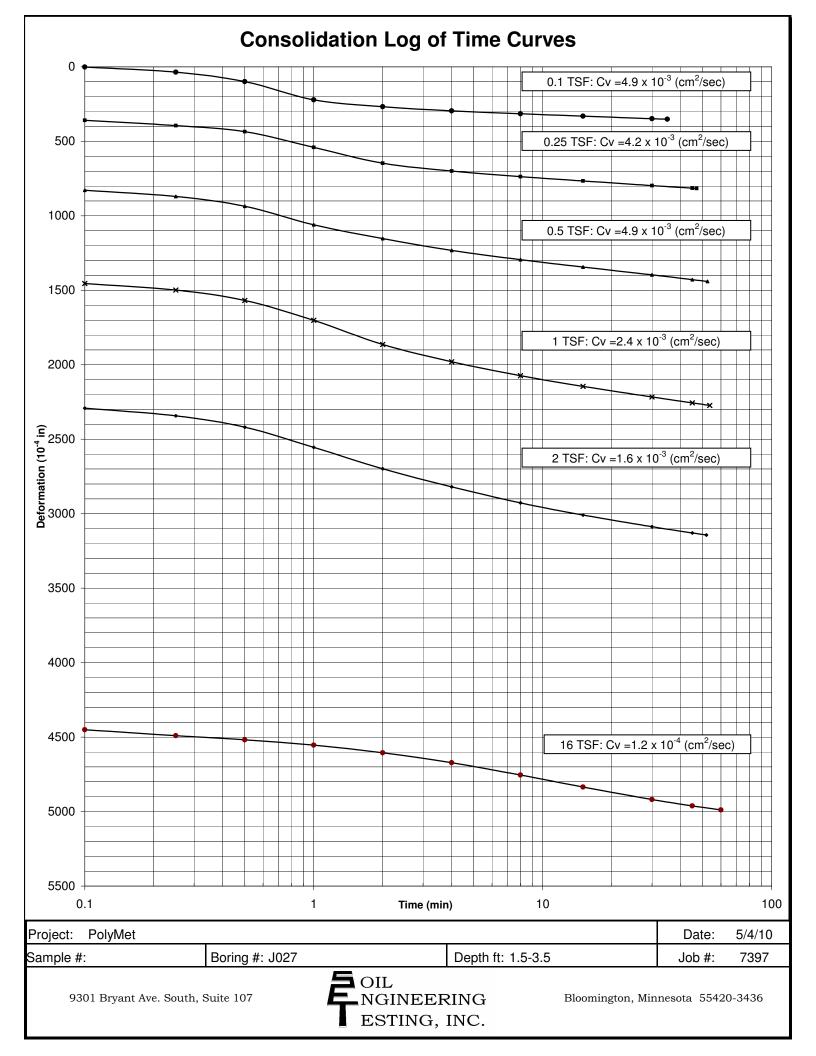

**NOTES:** 

Points Used for E_o Calculation: 14 to 26


Good test; just starting to yield at end of test.







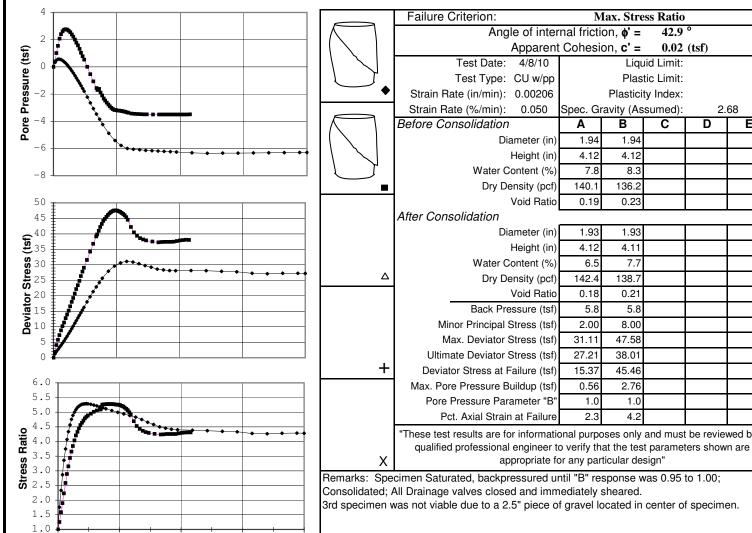









### TRIAXIAL TEST ASTM: D 4767


Job No. 7397 Date: 5/5/10

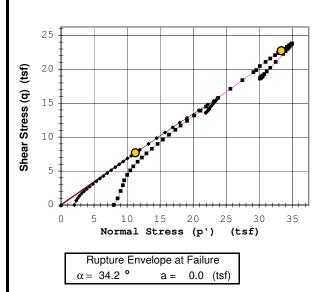
**PolvMet** Project:

0

Boring #: J003 Sample #: Type: 3T Depth (ft): 15-18

Soil Type: Silty Clayey Sand w/a little gravel (SC-SM)

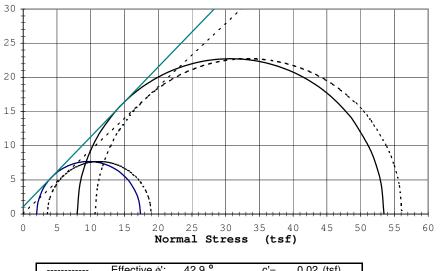



15

20

Failure Criterion: Max. Stress Ratio Angle of internal friction, **\operator** = 42.9 Apparent Cohesion, c' = 0.02 (tsf) Test Date: 4/8/10 Liquid Limit: Test Type: CU w/pp Plastic Limit: Strain Rate (in/min): 0.00206 Plasticity Index: Strain Rate (%/min): 0.050 Spec. Gravity (Assumed): Before Consolidation В Ε 1.94 1.94 Diameter (in) Height (in) 4.12 4.12 Water Content (%) 7.8 8.3 Dry Density (pcf) 140.1 136.2 Void Ratio After Consolidation Diameter (in) 1.93 1.93 Height (in) 6.5 7.7 Water Content (%) Dry Density (pcf) 142.4 138.7 Void Ratio 0.18 0.21 5.8 Back Pressure (tsf) 5.8 Minor Principal Stress (tsf 2.00 8.00 Max. Deviator Stress (tsf) 31.11 47.58 Ultimate Deviator Stress (tsf) 27.21 38.01 Deviator Stress at Failure (tsf) 15.37 45.46 0.56 2.76 Max. Pore Pressure Buildup (tsf) Pore Pressure Parameter "B' 1.0 1.0 Pct. Axial Strain at Failure "These test results are for informational purposes only and must be reviewed by a

Remarks: Specimen Saturated, backpressured until "B" response was 0.95 to 1.00; Consolidated; All Drainage valves closed and immediately sheared.


appropriate for any particular design"



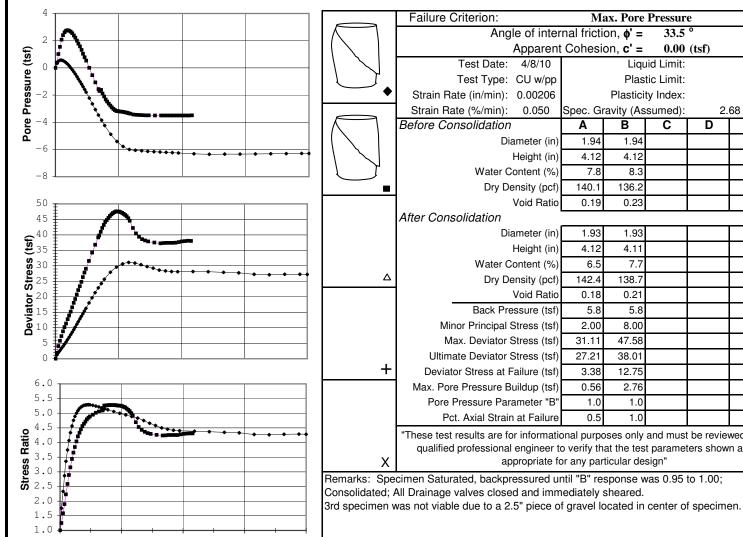
9301 Bryant Ave. South Suite #107

10

Axial Strain (%)



Effective \( \psi': \) 42.9 ° c'= 0.02 (tsf)Total o': 45.6° C= 1.09 (tsf)


### TRIAXIAL TEST ASTM: D 4767

Job No. 7397 Date: 5/5/10

Project: **PolyMet** 

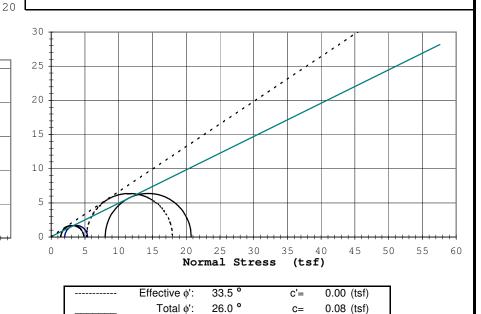
Boring #: J003 Sample #: Type: 3T Depth (ft): 15-18

Soil Type: Silty Clayey Sand w/a little gravel (SC-SM)



15

	Failure Criterion:	Max. Pore Pressure							
	Angle of inter	nal fricti	on, <b>φ' =</b>	33.5	0				
	Apparent	(tsf)							
	Test Date: 4/8/10			id Limit:					
	Test Type: CU w/pp			ic Limit:					
•	Strain Rate (in/min): 0.00206		Plasticit	y Index:					
	Strain Rate (%/min): 0.050		avity (As			68			
	Before Consolidation	Α	В	С	D	Е			
	Diameter (in)	1.94	1.94						
	Height (in)	4.12	4.12						
	Water Content (%)	7.8	8.3						
	Dry Density (pcf)		136.2						
	Void Ratio	0.19	0.23						
	After Consolidation								
	Diameter (in)	1.93	1.93						
	Height (in)	4.12	4.11						
^	Water Content (%)		7.7						
Δ	Dry Density (pcf)	142.4	138.7						
	Void Ratio	0.18	0.21						
	Back Pressure (tsf)	5.8	5.8						
	Minor Principal Stress (tsf)		8.00						
	Max. Deviator Stress (tsf)	31.11 27.21	47.58						
+	Ultimate Deviator Stress (tsf) Deviator Stress at Failure (tsf)		38.01 12.75						
	Max. Pore Pressure Buildup (tsf)	0.56	2.76						
	Pore Pressure Buildup (ISI)	1.0	1.0						
	Pct. Axial Strain at Failure	0.5	1.0						
				- :- al :::a. : a t	l- a manular	م برما ام			
	"These test results are for information qualified professional engineer to								
	qualified professional engineer to	o verily th	at the test	. paramet	CIS SIIOW	ii aic			


Remarks: Specimen Saturated, backpressured until "B" response was 0.95 to 1.00; Consolidated; All Drainage valves closed and immediately sheared.

25 (tst) 20 Shear Stress (q) 15 10 5 25 30 35 10 15 20 Normal Stress (p') Rupture Envelope at Failure  $\alpha = 28.9$  ° a = 0.0 (tsf)

9301 Bryant Ave. South Suite #107

5 10 **Axial Strain (%)** 

0



NGINEERING ESTING, INC.

Total o':

0.08 (tsf)

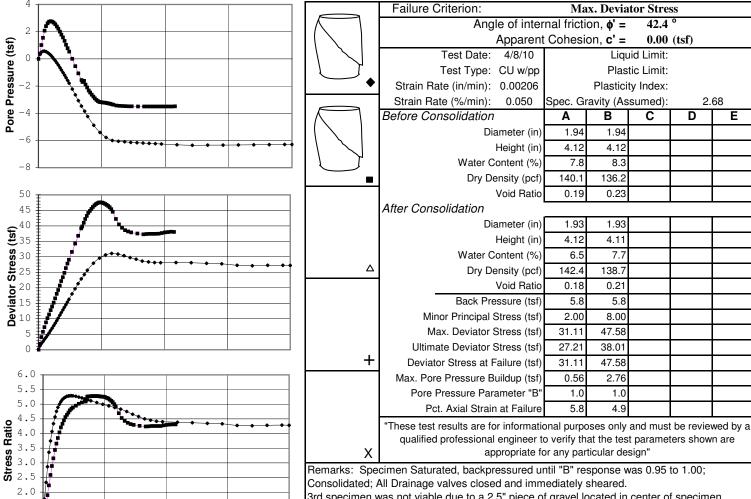
C=

### TRIAXIAL TEST ASTM: D 4767

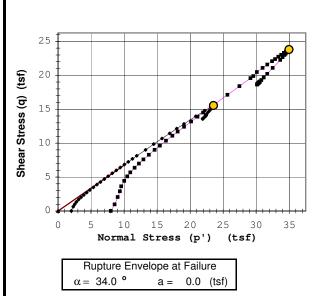
Job No. 7397 Date: 5/5/10

**PolvMet** Project:

> 1.5 1.0


> > 0

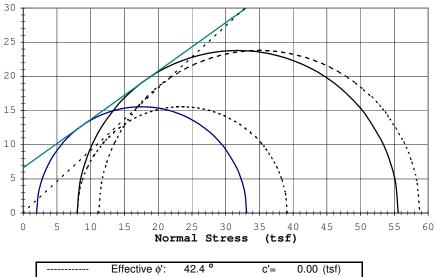
Boring #: J003 Sample #: Type: 3T Depth (ft): 15-18


20

15

Soil Type: Silty Clayey Sand w/a little gravel (SC-SM)




3rd specimen was not viable due to a 2.5" piece of gravel located in center of specimen.



9301 Bryant Ave. South Suite #107

10

Axial Strain (%)



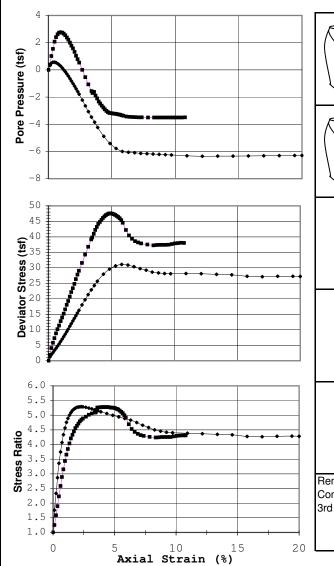
NGINEERING ESTING, INC.

C=

6.62 (tsf)

35.3°

Total o':

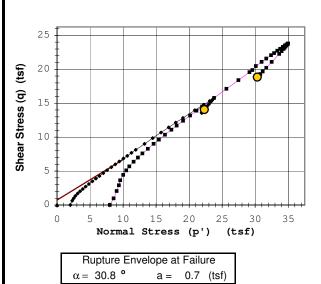

### TRIAXIAL TEST ASTM: D 4767

Job No. 7397 Date: 5/5/10

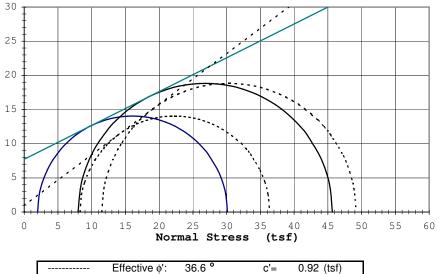
Project: PolyMet

Boring #: J003 Sample #: Type: 3T Depth (ft): 15-18

Soil Type: Silty Clayey Sand w/a little gravel (SC-SM)




	Failure Criterion:	Giv	en Straii	n of: 10	%	
	Angle of inter	nal fricti	on, <b>థ' =</b>	36.6	0	
	Apparent	Cohesi	on, <b>c' =</b>	0.92	(tsf)	
	Test Date: 4/8/10		Liqu	id Limit:		
	Test Type: CU w/pp		Plast	ic Limit:		
•	Strain Rate (in/min): 0.00206		Plasticit	y Index:		
	Strain Rate (%/min): 0.050	Spec. Gr	avity (As:	sumed):	2.	.68
	Before Consolidation	Α	В	С	D	E
	Diameter (in)	1.94	1.94			
	Height (in)	4.12	4.12			
	Water Content (%)	7.8	8.3			
	Dry Density (pcf)	140.1	136.2			
	Void Ratio	0.19	0.23			
	After Consolidation					
	Diameter (in)	1.93	1.93			
	Height (in)	4.12	4.11			
	Water Content (%)	6.5	7.7			
Δ	Dry Density (pcf)	142.4	138.7			
	Void Ratio	0.18	0.21			
	Back Pressure (tsf)	5.8	5.8			
	Minor Principal Stress (tsf)	2.00	8.00			
	Max. Deviator Stress (tsf)	31.11	47.58			
+	Ultimate Deviator Stress (tsf)	27.21	38.01			
Т	Deviator Stress at Failure (tsf)	28.10	37.67			
	Max. Pore Pressure Buildup (tsf)	0.56	2.76			
	Pore Pressure Parameter "B"	1.0	1.0			
	Pct. Axial Strain at Failure	10.0	10.0			<u> </u>
	"These test results are for information		•			,
	qualified professional engineer to	o verity th	ai ine test	. paramet	lers snow	m are


Remarks: Specimen Saturated, backpressured until "B" response was 0.95 to 1.00; Consolidated; All Drainage valves closed and immediately sheared.

3rd specimen was not viable due to a 2.5" piece of gravel located in center of specimen.

appropriate for any particular design"



9301 Bryant Ave. South Suite #107



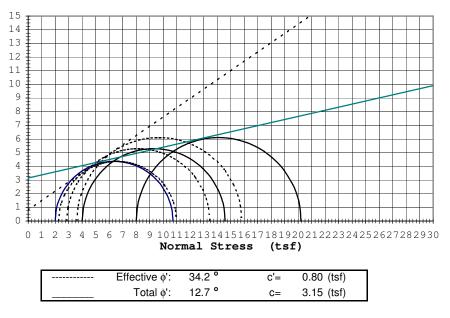
S OIL PAGINEERING ESTING, INC.

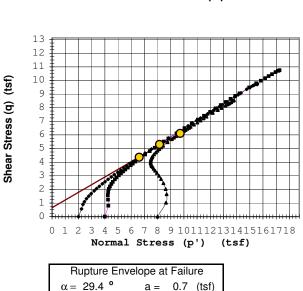
C=

7.73 (tsf)

26.3 °

Total oh:


Job: Date: 7397 40303 Triaxial Plot Data Sample 5


Pore Pressure (tsf)

Deviator Stress (tsf)

Вс	ring:	J0	03	Γ	epth:		-18	е васа				Date
Sa	ample	1	S	ample	2	5	Sample	3	S	ample	4	,
Strain (%)	Deviator Stress (tsf)	Pore Pressure (tsf)	Strain (%)	Deviator Stress (tsf)	Pore Pressure (tsf)	Strain (%)	Deviator Stress (tsf)	Pore Pressure (tsf)	Strain (%)	Deviator Stress (tsf)	Pore Pressure (tsf)	Strain (%)
0.00 0.12 0.24 0.37 0.49 0.61 0.73 0.85 0.97 1.09 1.21 1.34 1.46 1.58 1.70 1.82 1.94 2.18 2.31 2.43 2.67 2.91 3.16 3.40 3.64 3.88 7.77 8.25 8.74 9.21 9.71 10.92 12.14 13.35 14.56 15.78 16.99 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 17.77 1	0.00 1.27 2.00 2.69 3.38 4.04 4.72 5.42 6.17 6.99 7.79 8.56 9.40 10.25 11.14 11.97 12.84 13.71 14.50 15.37 16.26 18.04 19.70 21.34 22.87 24.27 25.66 27.94 29.60 30.65 31.11 30.87 30.37 29.75 29.22 28.63 28.13 28.10 28.16 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.28 27.21	0.00 0.33 0.49 0.56 0.56 0.53 0.46 0.38 0.14 -0.30 -0.46 -0.65 -0.82 -1.01 -1.20 -1.38 -1.79 -2.23 -2.64 -3.07 -3.47 -3.85 -4.89 -5.41 -6.10 -6.14 -6.10 -6.14 -6.21 -6.24 -6.32 -6.32 -6.32 -6.32 -6.32 -6.32 -6.32 -6.32 -6.32 -6.32 -6.32 -6.29	0.00 0.12 0.24 0.36 0.49 0.61 0.73 0.85 0.97 1.09 1.22 1.34 1.46 1.58 1.70 1.82 1.94 2.07 2.19 2.31 2.43 2.67 2.92 3.16 3.40 3.48 3.61 3.73 3.85 3.97 4.09 4.21 4.33 4.46 4.58 4.70 4.82 4.94 5.06 5.19 5.31 5.43 5.55 5.67 5.79 5.91 6.16 6.40 6.64 6.89 7.13 7.37 7.86 8.35 8.59 8.83 9.32 9.56 9.80 10.05 10.29 10.53 10.78	0.00 1.93 4.09 5.80 7.29 8.85 10.18 11.35 12.75 13.97 15.20 16.58 18.01 19.27 20.70 22.18 23.38 24.81 26.36 27.78 29.01 31.57 34.25 36.79 39.15 39.15 34.25 36.79 39.15 47.31 47.31 47.31 47.33 47.58 47.01 47.31 47.32 47.06 46.74 46.39 47.31 47.31 47.32 47.06 46.74 46.39 45.98 45.38 47.41 37.43 37.43 37.43 37.43 37.41 37.41 37.43 37.41 37.43 37.41 37.43 37.41 37.43 37.41 37.43 37.43 37.41 37.43 37.41 37.43 37.41 37.43 37.41 37.43 37.43 37.43 37.41 37.43 37.43 37.43 37.43 37.43 37.41 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43 37.43	0.00 0.39 1.01 1.54 2.07 2.40 2.61 2.73 2.66 2.54 2.38 2.21 2.01 1.77 1.57 1.32 1.04 0.77 0.53 0.01 -0.54 -1.07 -1.57 -1.71 -1.62 -1.89 -2.11 -2.33 -2.48 -2.64 -2.78 -2.90 -3.02 -3.11 -3.18 -3.21 -3.23 -3.25 -3.28 -3.31 -3.35 -3.38 -3.46 -3.47 -3.49 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50 -3.50							

#### Job No. 7397 TRIAXIAL TEST ASTM: D 4767 Date: 5/5/10 Sample #: Type: 3T Depth (ft): 5.5-8 Silty Sand w/a little gravel (SM) Failure Criterion: Max. Stress Ratio Angle of internal friction, **\operator** = 34.2 Apparent Cohesion, c' = 0.80 (tsf) Test Date: 4/13/10 Liquid Limit: Test Type: CU w/pp Plastic Limit: Strain Rate (in/min): 0.00206 Plasticity Index: Strain Rate (%/min): 0.050 Spec. Gravity (Assumed): Before Consolidation В Ε 1.94 1.94 1.94 Diameter (in) Height (in) 4.12 4.12 4.12 Water Content (%) 9.8 8.9 14.2 Dry Density (pcf) 133.8 126.7 123.3 Void Ratio 0.27 After Consolidation Diameter (in) 1.93 1.92 1.90 Height (in) 4.12 4.09 9.3 11.1 Water Content (%) 11.1 Δ Dry Density (pcf) 135.6 130.5 130.4 0.25 Void Ratio 0.30 0.30 5.8 Back Pressure (tsf) 5.8 5.8 Minor Principal Stress (tsf 2.00 4.00 8.00 Max. Deviator Stress (tsf) 19.52 21.50 17.10 Ultimate Deviator Stress (tsf) 19.41 21.50 17.10 + Deviator Stress at Failure (tsf) 8.72 10.59 12.21 0.73 1.97 4.85 Max. Pore Pressure Buildup (tsf) Pore Pressure Parameter "B' 1.0 1.0 1.0 5.9 Pct. Axial Strain at Failure "These test results are for informational purposes only and must be reviewed by a qualified professional engineer to verify that the test parameters shown are appropriate for any particular design" Remarks: Radial drainage strips applied to trimmed specimen; Saturated, backpressured until "B" response was 0.95 to 1.00; Consolidated; All Drainage valves closed and immediately sheared. Specimens varied in density leading to higher maximum strengths at lower consolidation pressures. 15 20 Axial Strain (%) 15 14 13





9301 Bryant Ave. South Suite #107

10

**PolvMet** 

J010

Project: Boring #:

Soil Type:

5

4

3

2

1

0

-1

-2

-3

-5

25

**Deviator Stress (tsf)**20
21
20
2

5.5

5.0

4.5

**Stress Batio**3.5
3.0
2.5

2.0

1.5

1.0

0

Pore Pressure (tsf)

# TRIAXIAL TEST ASTM: D 4767

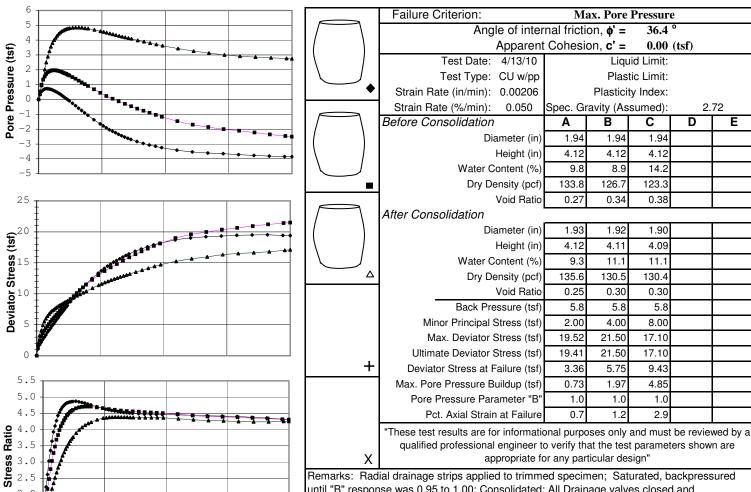
Job No. 7397

Date: 5/5/10

**PolvMet** Project:

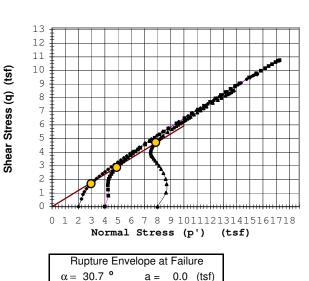
2.0

1.5


1.0

0

Boring #: J010 Sample #: Soil Type: Silty Sand w/a little gravel (SM)


Type: 3T

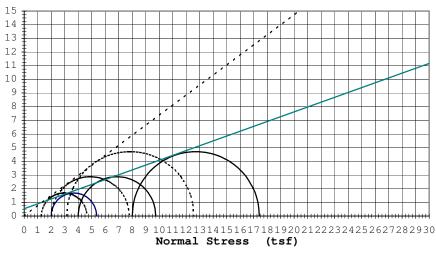
Depth (ft): 5.5-8



Remarks: Radial drainage strips applied to trimmed specimen; Saturated, backpressured until "B" response was 0.95 to 1.00; Consolidated; All Drainage valves closed and immediately sheared.

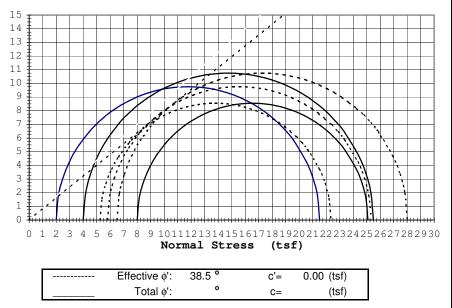
Specimens varied in density leading to higher maximum strengths at lower consolidation pressures.

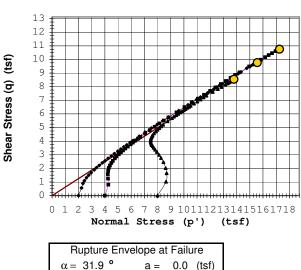



9301 Bryant Ave. South Suite #107

10

Axial Strain (%)


15


20



Effective \( \psi': \) 36.4° c'= 0.00 (tsf)Total o': 19.5° C= 0.54 (tsf)

#### Job No. 7397 TRIAXIAL TEST ASTM: D 4767 Date: 5/5/10 Sample #: Type: 3T Depth (ft): 5.5-8 Silty Sand w/a little gravel (SM) Failure Criterion: Max. Deviator Stress Angle of internal friction, **\operator** = 38.5 Apparent Cohesion, c' = 0.00 (tsf) Test Date: 4/13/10 Liquid Limit: Test Type: CU w/pp Plastic Limit: Strain Rate (in/min): 0.00206 Plasticity Index: Strain Rate (%/min): 0.050 Spec. Gravity (Assumed): Before Consolidation В Ε 1.94 1.94 1.94 Diameter (in) Height (in) 4.12 4.12 4.12 Water Content (%) 9.8 8.9 14.2 Dry Density (pcf) 133.8 126.7 123.3 Void Ratio 0.27 0.34 After Consolidation Diameter (in) 1.93 1.92 1.90 Height (in) 4.12 4.09 9.3 11.1 Water Content (%) 11.1 Δ Dry Density (pcf) 135.6 130.5 130.4 0.25 Void Ratio 0.30 0.30 5.8 Back Pressure (tsf) 5.8 5.8 Minor Principal Stress (tsf 2.00 4.00 8.00 Max. Deviator Stress (tsf 19.52 21.50 17.10 19.41 Ultimate Deviator Stress (tsf) 21.50 17.10 + Deviator Stress at Failure (tsf) 19.52 21.50 17.10 0.73 1.97 4.85 Max. Pore Pressure Buildup (tsf) Pore Pressure Parameter "B' 1.0 1.0 1.0 18.2 20.0 20.0 Pct. Axial Strain at Failure "These test results are for informational purposes only and must be reviewed by a qualified professional engineer to verify that the test parameters shown are appropriate for any particular design" Remarks: Radial drainage strips applied to trimmed specimen; Saturated, backpressured until "B" response was 0.95 to 1.00; Consolidated; All Drainage valves closed and immediately sheared. Specimens varied in density leading to higher maximum strengths at lower consolidation pressures. 10 15 20 Axial Strain (%) 15 14 13 12 11 10





9301 Bryant Ave. South Suite #107

**PolvMet** 

J010

Project: Boring #:

Soil Type:

5

4

3

2

0

-2

-3

-5

25

**Deviator Stress (tsf)**20
21
20
2

5.5

5.0

4.5

**Stress Batio**3.5
3.0
2.5

2.0

1.5

1.0

0

Pore Pressure (tsf)

#### Job No. 7397 TRIAXIAL TEST ASTM: D 4767 Date: 5/5/10 **PolvMet** Project: Boring #: J010 Sample #: Type: 3T Depth (ft): 5.5-8 Soil Type: Silty Sand w/a little gravel (SM) Given Strain of: 15% Failure Criterion: 5 Angle of internal friction, **\operator** = 38.9° 4 Apparent Cohesion, c' = 0.00 (tsf) Pore Pressure (tsf) 3 Test Date: 4/13/10 Liquid Limit: 2 Test Type: CU w/pp Plastic Limit: Strain Rate (in/min): 0.00206 Plasticity Index: 0 Strain Rate (%/min): 0.050 Spec. Gravity (Assumed): Before Consolidation В Ε -2 1.94 1.94 1.94 Diameter (in) -3 Height (in) 4.12 4.12 4.12 Water Content (%) 9.8 8.9 14.2 -5 Dry Density (pcf) 133.8 126.7 123.3 25 Void Ratio 0.27 0.34 After Consolidation **Deviator Stress (tsf)**20 21 20 2 Diameter (in) 1.93 1.92 1.90 Height (in) 4.12 4.09 9.3 11.1 Water Content (%) 11.1 Δ Dry Density (pcf) 135.6 130.5 130.4 0.25 Void Ratio 0.30 0.30 5.8 Back Pressure (tsf) 5.8 5.8 Minor Principal Stress (tsf 2.00 4.00 8.00 Max. Deviator Stress (tsf 19.52 21.50 17.10 Ultimate Deviator Stress (tsf) 19.41 21.50 17.10 + Deviator Stress at Failure (tsf) 19.31 20.34 16.33 5.5 0.73 1.97 4.85 Max. Pore Pressure Buildup (tsf) 5.0 Pore Pressure Parameter "B' 1.0 1.0 1.0 4.5 15.0 15.0 15.0 Pct. Axial Strain at Failure **Stress Batio**3.5 3.0 2.5 "These test results are for informational purposes only and must be reviewed by a qualified professional engineer to verify that the test parameters shown are appropriate for any particular design" Remarks: Radial drainage strips applied to trimmed specimen; Saturated, backpressured until "B" response was 0.95 to 1.00; Consolidated; All Drainage valves closed and 2.0 immediately sheared. 1.5 Specimens varied in density leading to higher maximum strengths at lower consolidation 1.0 pressures. 0 10 15 20 Axial Strain (%) 15 14 13 13 12 12 11 11 10 (tst) 10 9 9 Shear Stress (q) 8 8 7 6 5 5 4 4 3 3 2 2. 1

 $0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 101112131415161718192021222324252627282930$ 3 4 5 6 7 8 9 101112131415161718 0 1 2 Normal Stress Normal Stress (p') Rupture Envelope at Failure Effective \( \psi': \) 38.9°  $\alpha = 32.1^{\circ}$ a = 0.0 (tsf)Total o':

9301 Bryant Ave. South Suite #107

NGINEERING ESTING, INC.

(tsf)

0.00 (tsf)

(tsf)

c'=

C=

Triaxial Plot Data

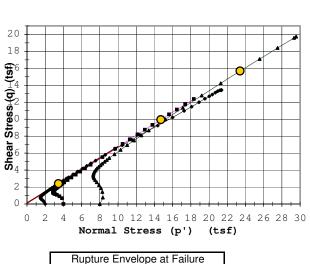
Job:

7397

J010 Depth: Boring: 5.5-8 Date: 5/5/10 Sample 3 Sample 5 Sample 1 Sample 2 Sample 4 Pore Pressure Pore Pressure Pore Pressure Pore Pressure Pore Pressure Deviator Stress (tsf) Deviator Stress (tsf) Stress (tsf) Stress (tsf) Strain (%) Stress (tsf. Strain (%) Strain (%) Strain (%) Strain (%) Deviator Deviator Deviator (tsf) (tst) (tsf) (tst) (tst) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 1.12 0.33 0.12 1.61 0.53 0.12 2.04 0.38 0.99 3.29 0.96 0.24 1.79 0.55 0.24 2.49 0.24 0.36 2.20 0.37 1.33 0.37 4.05 1.41 0.64 3.13 0.49 2.63 0.70 0.49 1.55 0.49 4.92 2.02 3.61 1.72 5.53 2.50 0.61 3.00 0.73 0.61 4.06 0.61 4.42 0.73 3.36 0.73 0.73 1.82 0.73 5.99 2.88 0.85 3.79 0.71 0.85 4.79 1.90 0.86 6.41 3.25 0.97 4.11 0.68 0.97 5.10 1.94 0.98 6.74 3.55 1.97 7.03 1.09 4.44 0.64 1.10 5.46 1.10 3.81 1.21 4.82 0.59 1.22 5.75 1.97 1.22 7.27 4.01 1.34 1.34 5.13 0.55 6.07 1.96 1.35 7.42 4.16 1.46 5.47 0.49 1.46 6.36 1.95 1.47 7.63 4.30 5.83 1.58 6.62 1.93 1.59 7.83 4.43 1.58 0.42 1.70 6.15 0.36 1.71 6.91 1.90 1.71 8.00 4.52 1.82 6.52 0.28 1.83 7.20 1.85 1.83 8.16 4.60 1.95 7.55 8.30 1.94 6.84 0.21 1.81 1.96 4.66 7.79 8.45 2.06 7.16 0.13 2.07 1.76 2.08 4.71 2.19 7.46 0.06 2.19 8.07 1.71 2.20 8.60 4.75 2.31 7.80 -0.022.31 8.35 1.66 2.32 8.74 4.78 2.43 8.09 -0.09 2.44 8.62 1.61 2.45 8.86 4.80 2.67 8.72 -0.25 2.68 9.12 1.50 2.69 9.15 4.84 2.94 2.91 9.30 -0.41 2.92 9.61 1.39 9.43 4.85 3.16 9.91 -0.58 3.17 10.11 1.27 3.18 9.68 4.85 10.47 -0.74 10.59 1.14 9.93 4.83 3.40 3.41 3.42 11.00 -0.90 3.65 11.03 1.03 3.67 10.17 4.81 3.64 3.88 11.54 -1.07 3.90 11.46 0.91 3.91 10.41 4.78 10.92 4.37 12.48 -1.374.38 12.23 0.68 4.40 4.69 4.86 13.33 -1.654.87 12.98 0.45 4.89 11.38 4.60 13.71 -1.78 5.36 13.66 0.24 5.14 11.60 4.55 5.10 11.83 5.34 14.10 -1.91 5.84 14.24 0.05 5.38 4.50 12.02 4.45 5.58 14.47 -2.03 6.33 14.81 -0.13 5.63 5.83 14.80 -2.146.82 15.36 -0.30 5.87 12.21 4.39 -2.24 7.31 15.89 -0.47 12.39 4.34 6.07 15.10 6.11 6.31 15.37 -2.34 7.79 16.38 -0.62 6.36 12.56 4.29 12.72 -2.44 8.28 16.83 -0.766.60 4.24 6.56 15.65 15.94 -2.53 8.77 17.29 -0.90 6.85 12.90 4.18 6.80 9.25 17.72 13.04 7.04 16.19 -2.62 -1.04 7.09 4.13 7.28 16.43 -2.69 9.74 18.10 -1.17 7.34 13.19 4.09 10.96 16.87 -2.8418.97 -1.46 7.83 13.51 3.99 7.77 8.26 17.23 -2.96 12.18 19.57 -1.70 8.32 13.82 3.89 8.74 17.59 -3.0713.39 19.95 -1.86 8.81 14.12 3.81 9.23 17.89 -3.16 14.61 20.34 -2.00 9.29 14.43 3.72 9.71 18.16 -3.25 15.83 20.64 -2.11 9.78 14.69 3.63 10.93 18.70 -3.41 17.05 20.91 -2.23 11.01 15.23 3.43 12.14 19.01 -3.5418.26 21.21 -2.3512.23 15.66 3.26 13.35 19.22 -3.61 19.48 21.41 -2.4613.45 15.95 3.13 14.57 19.31 20.00 21.50 -2.51 14.68 16.33 3.00 -3.6519.44 -3.72 15.90 16.49 15.78 2.92 16.63 17.00 19.49 -3.7717.12 2.86 18.21 19.52 -3.81 18.35 16.80 2.81 19.42 19.42 -3.85 19.57 17.02 2.77

20.00

17.10


2.75

20.00

19.41

-3.86

#### Job No. 7397 TRIAXIAL TEST ASTM: D 4767 Date: 5/4/10 Sample #: Type: 3T Depth (ft): 10-12.5 Silty Sand w/gravel (SM) Failure Criterion: Max. Stress Ratio Angle of internal friction, $\phi' =$ 41.7 Apparent Cohesion, c' = 0.16 (tsf) Test Date: 4/6/10 Liquid Limit: Test Type: CU w/pp Plastic Limit: Strain Rate (in/min): 0.0297 Plasticity Index: Strain Rate (%/min): 0.501 Spec. Gravity (Assumed): Before Consolidation В Ε 2.88 2.88 2.88 Diameter (in) Height (in) 5.98 5.98 5.98 Water Content (%) 8.1 8.5 7.5 Dry Density (pcf) 140.7 139.5 139.7 Void Ratio 0.19 0.20 After Consolidation Diameter (in) 2.87 2.86 2.88 Height (in) 5.93 5.92 5.87 6.2 6.4 Water Content (%) 6.3 Δ Dry Density (pcf) 143.3 143.4 142.7 Void Ratio 0.17 0.17 0.17 5.8 Back Pressure (tsf) 5.8 5.8 Minor Principal Stress (tsf) 2.00 4.00 8.00 Max. Deviator Stress (tsf) 26.92 Ultimate Deviator Stress (tsf) 26.82 + Deviator Stress at Failure (tsf) 4.80 19.88 31.35 1.36 4.51 Max. Pore Pressure Buildup (tsf) 2.64 Pore Pressure Parameter "B' 1.0 1.0 1.0 3.0 Pct. Axial Strain at Failure "These test results are for informational purposes only and must be reviewed by a qualified professional engineer to verify that the test parameters shown are appropriate for any particular design" Remarks: Radial drainage strips applied to trimmed specimen; Saturated, backpressured until "B" response was 0.95 to 1.00; Consolidated; All Drainage valves closed and immediately sheared. Samples tripped load cell max switch on highest confinement pressures at 5% strain. Switch was also tripped for lowest load; however, triax was manually overridden and run to completion at lowest confinement. 20 10 15 Axial Strain (%) 24 22 20 18 16 14



a = 0.1 (tsf)

9301 Bryant Ave. South Suite #107

 $\alpha = 33.6$  °

**PolvMet** 

J027

Project: Boring #:

Soil Type:

Pore Pressure (tsf)

-4

-8

45

40

25 20 20 **Stress** (**1st)** 

**Deviator** 10

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.0

1.5

1.0

0

**5** 2.5

12 10 8 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 Normal Stress (tsf)

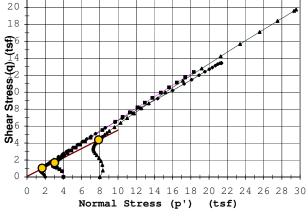


Effective \( \psi': \)

Total o':

c'=

C=


0.16 (tsf)

0.00 (tsf)

41.7°

41.0°

#### Job No. 7397 TRIAXIAL TEST ASTM: D 4767 Date: 5/4/10 **PolvMet** Project: Boring #: J027 Sample #: Type: 3T Depth (ft): 10-12.5 Soil Type: Silty Sand w/gravel (SM) Max. Pore Pressure Failure Criterion: Angle of internal friction, **\operator** = 33.0 Apparent Cohesion, c' = 0.09 (tsf) Pore Pressure (tsf) Test Date: 4/6/10 Liquid Limit: Test Type: CU w/pp Plastic Limit: Strain Rate (in/min): 0.0297 Plasticity Index: Strain Rate (%/min): 0.501 Spec. Gravity (Assumed): Before Consolidation В Ε -4 2.88 2.88 2.88 Diameter (in) Height (in) 5.98 5.98 5.98 Water Content (%) 8.1 8.5 7.5 -8 Dry Density (pcf) 140.7 139.5 139.7 45 Void Ratio 0.19 0.20 After Consolidation 40 Diameter (in) 2.87 2.86 2.88 25 20 20 **Stress** (**1st)** Height (in) 5.93 5.92 5.87 6.2 6.4 Water Content (%) 6.3 Δ Dry Density (pcf) 143.3 143.4 142.7 Void Ratio 0.17 0.17 0.17 **Deviator** 10 5.8 Back Pressure (tsf) 5.8 5.8 Minor Principal Stress (tsf) 2.00 4.00 8.00 Max. Deviator Stress (tsf) 26.92 Ultimate Deviator Stress (tsf) 26.82 + Deviator Stress at Failure (tsf) 2.06 3.36 8.76 6.0 1.36 4.51 Max. Pore Pressure Buildup (tsf) 2.64 5.5 Pore Pressure Parameter "B' 1.0 1.0 1.0 5.0 Pct. Axial Strain at Failure 4.5 "These test results are for informational purposes only and must be reviewed by a 4.0 qualified professional engineer to verify that the test parameters shown are 3.5 appropriate for any particular design" 3.0 Remarks: Radial drainage strips applied to trimmed specimen; Saturated, backpressured until "B" response **5** 2.5 was 0.95 to 1.00; Consolidated; All Drainage valves closed and immediately sheared. 2.0 Samples tripped load cell max switch on highest confinement pressures at 5% strain. Switch was also 1.5 tripped for lowest load; however, triax was manually overridden and run to completion at lowest confinement. 1.0 20 0 10 15 Axial Strain (%) 24 22 20 18 16 14 12 10 8 6



Rupture Envelope at Failure  $\alpha = 28.6$  ° a = 0.1 (tsf) Effective \( \psi': \) 33.0° c'= 0.09 (tsf)20.0° Total o': C= 0.00 (tsf)

Normal Stress



8

10 12 14

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

(tsf)

#### Job No. 7397 TRIAXIAL TEST ASTM: D 4767 Date: 5/4/10 **PolvMet** Project: Boring #: J027 Sample #: Type: 3T Depth (ft): 10-12.5 Soil Type: Silty Sand w/gravel (SM) Given Strain of: 5% Failure Criterion: Angle of internal friction, $\phi' =$ 41.7 Apparent Cohesion, c' = 0.18 (tsf) Pore Pressure (tsf) Test Date: 4/6/10 Liquid Limit: Test Type: CU w/pp Plastic Limit: Strain Rate (in/min): 0.0297 Plasticity Index: Strain Rate (%/min): 0.501 Spec. Gravity (Assumed): Before Consolidation В Ε -4 2.88 2.88 2.88 Diameter (in) Height (in) 5.98 5.98 5.98 Water Content (%) 8.1 8.5 7.5 -8 Dry Density (pcf) 140.7 139.5 139.7 45 Void Ratio 0.19 0.20 After Consolidation 40 Diameter (in) 2.87 2.86 2.88 25 20 20 **Stress** (**1st)** Height (in) 5.93 5.92 5.87 6.2 6.4 Water Content (%) 6.3 Δ Dry Density (pcf) 143.3 143.4 142.7 Void Ratio 0.17 0.17 0.17 **Deviator** 10 5.8 Back Pressure (tsf) 5.8 5.8 Minor Principal Stress (tsf) 2.00 4.00 8.00 Max. Deviator Stress (tsf) 26.92 Ultimate Deviator Stress (tsf) 26.82 + Deviator Stress at Failure (tsf) 9.57 23.47 34.20 6.0 1.36 4.51 Max. Pore Pressure Buildup (tsf) 2.64 5.5 Pore Pressure Parameter "B' 1.0 1.0 1.0 5.0 5.0 5.0 5.0 Pct. Axial Strain at Failure 4.5 "These test results are for informational purposes only and must be reviewed by a 4.0 qualified professional engineer to verify that the test parameters shown are 3.5 appropriate for any particular design" 3.0 Remarks: Radial drainage strips applied to trimmed specimen; Saturated, backpressured until "B" response **5** 2.5 was 0.95 to 1.00; Consolidated; All Drainage valves closed and immediately sheared. 2.0 Samples tripped load cell max switch on highest confinement pressures at 5% strain. Switch was also 1.5 tripped for lowest load; however, triax was manually overridden and run to completion at lowest confinement. 1.0 20 0 10 15 Axial Strain (%) 24 22 20 20 18 18 16 Stress_(q) (tsf) 14 12 10 8 Shear 6 6 2. 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 8 10 12 14 16 18 20 22 24 26 28 30 4 6 2 4 Normal Stress (tsf) Normal Stress (p')

OIL NGINEERING ESTING, INC. Effective \( \psi': \)

Total o':

Rupture Envelope at Failure

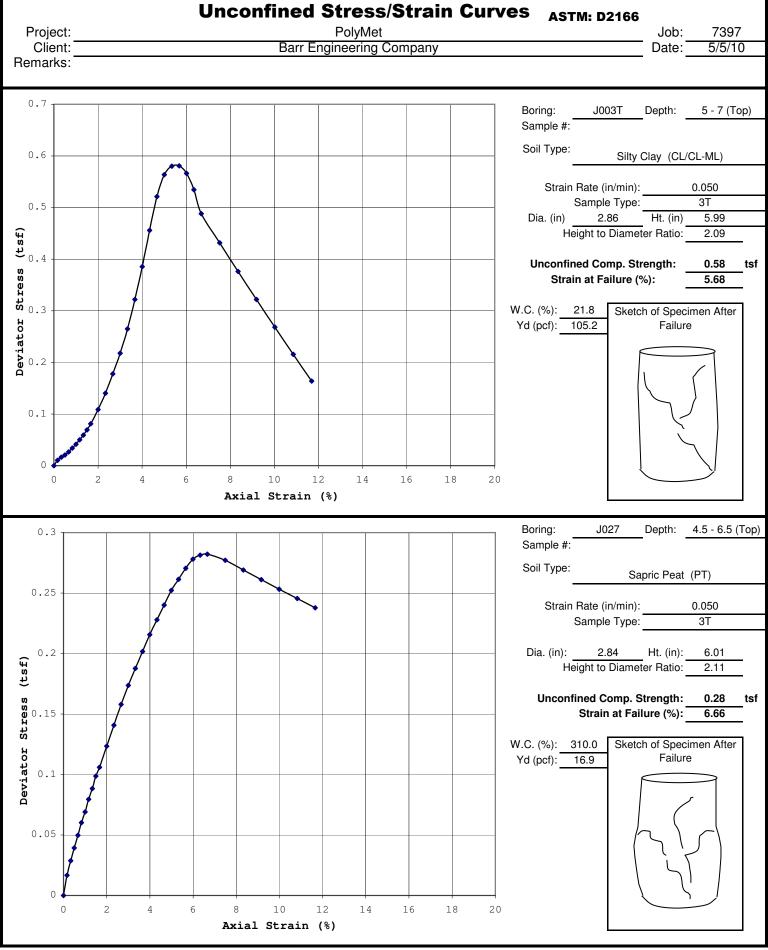
a = 0.1 (tsf)

9301 Bryant Ave. South Suite #107

 $\alpha = 33.6$  °

c'=

C=


0.18 (tsf)

0.74 (tsf)

41.7°

42.2°

					Triaxi		t Data				Job:		97
Boring:	J027			epth:	10-1						Date:		2010
Sample 1		Sa	ample	2	S	ample	3	S	ample	4	S	ample	5
Strain (%) Deviator Stress (tsf)	(tsf)	Strain (%)	Deviator Stress (tsf)	Pore Pressure (tsf)	Strain (%)	Deviator Stress (tsf)	Pore Pressure (tsf)	Strain (%)	Deviator Stress (tsf)	Pore Pressure (tsf)	Strain (%)	Deviator Stress (tsf)	Pore Pressure (tsf)
0.00	0.00 0.35 0.60 0.79 0.93 1.04 1.13 1.19 1.24 1.28 1.31 1.33 1.34 1.35 1.36 1.36 1.36 1.36 1.36 1.37 1.38 1.39 1.39 1.30 1.31 1.28 1.24 1.20 1.14 1.08 0.94 0.77 0.68 0.89 0.77 0.68 0.89 0.77 0.68 0.89 0.77 0.68 0.89 0.77 0.68 0.89 0.77 0.68 0.89 0.77 0.68 0.89 0.77 0.68 0.89 0.77 0.68 0.89 0.77 0.59 0.43 0.27 0.09 -0.08 -0.24 -0.42 -0.42 -1.52 -1.92 -2.27 -3.11 -3.79 -4.62 -4.90 -5.13 -5.55 -5.65 -5.55 -5.55 -5.59 -5.90 -5.95	0.00 0.08 0.17 0.25 0.34 0.42 0.59 0.68 0.76 0.85 0.93 1.01 1.10 1.18 1.27 1.35 1.44 1.52 1.61 1.69 1.86 2.03 2.20 2.37 2.54 2.71 3.38 4.39 4.06 4.23 4.39 4.56 4.73 4.90 5.07	0.00 1.36 1.82 2.14 2.31 2.46 2.57 2.68 2.82 2.93 3.07 3.22 3.36 3.52 3.73 3.90 4.12 4.35 4.59 4.80 5.08 5.63 6.24 6.91 7.62 8.39 9.25 11.06 13.03 14.14 15.24 16.40 17.50 18.64 19.88 21.11 22.26 23.47 24.74	0.00 0.84 1.35 1.78 2.04 2.25 2.38 2.47 2.55 2.62 2.64 2.64 2.63 2.62 2.59 2.45 2.35 2.24 2.11 1.96 1.81 1.63 1.24 0.82 0.57 0.32 0.06 -0.20 -0.46 -0.76 -1.06 -1.96	0.00 0.09 0.17 0.26 0.34 0.43 0.51 0.60 0.68 0.77 0.85 0.94 1.02 1.11 1.19 1.28 1.36 1.45 1.53 1.62 1.70 1.88 2.05 2.22 2.39 2.56 2.73 3.07 3.41 3.75 4.09 4.43 4.77 5.12 5.50	0.00 1.50 2.84 3.73 4.44 5.13 5.62 6.05 6.41 6.72 7.05 7.37 7.68 8.05 8.36 8.76 9.15 9.96 10.38 10.83 11.74 12.77 14.99 16.19 17.36 19.95 22.68 25.58 28.46 31.35 34.20 36.78 39.15 39.46	0.00 0.41 1.14 1.75 2.30 2.90 3.31 3.66 3.91 4.09 4.24 4.34 4.41 4.47 4.50 4.51 4.49 4.46 4.11 3.93 3.74 3.52 3.31 2.79 2.23 1.60 0.95 0.26 -0.46 -1.13 -1.75 -1.83						



# Hydraulic Conductivity Test Data

Project:			PolyMet			Date: _	5/5/2010
Reported To:		Barr E	Engineering Co	mpany		Job No.:_	7397
Boring No.:	J003	J010	J010	J027			
Sample No.:							
Depth (ft)	10-13	5.5-8 (mid)	14-16.5 (mid)	4.5-6.5			
Location:							
Sample Type:	3T	3T	3Т	3Т			
Soil Type:	Silty Clayey Sand w/gravel, gray (SC-SM/SM)	Silty Sand w/a little gravel (SM/SC-SM)	Silty Sand w/gravel (SM/SC-SM)	Sapric Peat w/a few pieces of stems and wood (PT)			
Atterberg Limits							
<u>LL</u>							
PL							
PI							
Permeability Test	Undisturbed	Undisturbed	Undisturbed	Undisturbed			
Saturation %: Porosity: Ht. (in): Dia. (in): Dry Density (pcf): Water Content:							
Porosity:							
ပိ Ht. (in):	3.31	2.87	3.00	3.42			
<u>စို Dia. (in):</u>	2.89	2.87	2.86	2.82			
Dry Density (pcf):	134.2	134.7	138.1	16.0			
^m Water Content:	9.0%	11.2%	8.1%	327.6%			
Test Type:	Falling	Falling	Falling	Falling			
Max Head (ft):	5.0	5.0	5.0	5.0			
Confining press. (Effective-psi):	2.0	2.0	2.0	2.0			
Trial No.:	12-16	3-7	6-10	7-11			
Water Temp °C:	22.0	22.0	22.0	21.0			
% Compaction							
% Saturation (After Test)	99.4%	99.1%	99.4%				
,		(	Coefficient of I		•		
K @ 20 °C (cm/sec)	3.1 x 10 ⁻⁷	4.7 x 10 ⁻⁷	9.4 x 10 ⁻⁷	3.6 x 10 ⁻⁷			
K @ 20 °C (ft/min)	6.2 x 10 ⁻⁷	9.3 x 10 ⁻⁷	1.8 x 10 ⁻⁶	7.0 x 10 ⁻⁷			
Notes:							
	9301 Bryant	: Ave. South Suite 10		Bloom	ington, Minnesota 5542	D-3436	



					Grain	Size	Dis	stributi	on A	STI	M D	422				Job	No. :	739	97
	Project: Po																Date:	4/29	
Repor	ted To: Ba	rr Engin	eering Com	pany											Rep	ort I	Date:	5/3/	′10
_	Location /	Boring No	o. Sam	ple No.	Depth (ft)	Sample Type						Soil Cla	ssification	1					
*	J0	03			4.5-6	Jar					Sandy	Silty Cl	lay (CL-N	IL/CL)					
•	J0	03			19.5-21	Jar					Clayey	Sand w/	a little gr	avel (SC	<u>.</u> )				
$\Diamond$	J0	10			4.5-6	Jar					Silty Sa	ınd w/a	little gra	vel (SM)					
	Coa	Gra	vel Fine		Coarse	Mediu	San	d	Fine				Нус	lromete Fin		lysis			7
100	Coa	irse	3/4 3/8	#	toarse #10	#2	)	#40	#100	#2	200			Fin	es				_
									$\downarrow$										7
90									$\perp 1$										3
				1					++	igwedge									7
80					```,														]
					7.	,				$\top$									1
70										$-$ \									1
, 0											<b>*</b>								1
60							<i>'</i>												
																			_
assin																			1
n P									-										7
Percent Passing									\ \ \ \ .										3
<b>~</b> 40									<b>*</b> ,	-									=
										`,,`									7
30																			3
																			_
20																			4
																			3
10																			=
																			7
0																			]
1	.00	2	10	5	2	1	G	.5 Frain Size (	.2 <b>mm)</b>	0.1	.05		.02	0.01		.005	.0	002	0.001
			Other Tests	1			Pe	rcent Passir	ng										
		*	•	$\Diamond$	]	*		•	$\Diamond$				*	•	<	>			
Liqu	uid Limit				Mass (g	g) 144	.6	301.1	229.3			D ₆₀							
Plas	tic Limit				-	2"				_		D ₃₀							
	city Index				1.5					_		D ₁₀							
	r Content	25.0	8.1	8.2	-	1"				_		C _U							
	ensity (pcf)				3/4			100.0	100.0	)		C _C							
	fic Gravity				3/8		_	95.8	93.2	-	Re	marks:							$\neg$
	orosity				#			88.0	86.3	-									
	ic Content				#1			79.2	78.5	$\dashv$									
	pH				#2			70.5	68.6	-									
	kage Limit				#4			61.8	58.8	$\dashv$									
	etrometer				#10 #20			45.5	40.4	$\dashv$									
	u (psf) assumed)				#20	0 67.	ŧ	34.9	30.8		<u> </u>								
, - 6							711		_										
							DIL	MEED	INIO										



										(	Gra	in	Siz	e [	Dis	strik	out	ion	AS	T	M E	)4	22					,	Job	No.	: '	7397
			Pol																											Date		4/29/10
Report	ed	To:	Bar	r En	gine	ering (	Com	pany	7																		R	ер	ort	Date	e:	5/3/10
	Lo	catio	n / E	Borin	g No		Sam	ple N	lo.	Γ	Depth	(ft)	Samp Type									S	oil Cla	ssifica	ation							
*			J01	0							9.5-1	11	Jar								Silty	Sano	d w/a	little	grave	1 (SM	)					
•			J02	7							12-13	3.5	Jar								S	ilty S	Sand v	v/gra	vel (S	M)						
$\Diamond$			J02	7							22-23	3.5	Jar								Silty	Sano	d w/a	little	grave	l (SM	)					
					Grav	vel									Sano	d								]	Hydro	omete		naly	ysis			
100	L	(	Coar 2	se	1	3/4	Fine	9	#4		arse	#10	Me	ediun #20	n	#40		Fine #	100	#2	200					Fin	ies					
100						1	<u> </u>								H																	
90					1		*								$\pm$																	
70	H				-		#		$\Rightarrow$		١.				#																	
80	Ш				\\ \\ \\ \	<b></b>	1					*			$\pm$																	
80	H						1	٠.				*	<del>\</del>		$\pm$																	
70									•					<b>`</b>	$\pm$																	
70							#			ľ	٠.,				1																	
60												Ť	•			1																
	Ш						1							٠.	H		1															
Percent Passing	H						#								٠,		1,			Н												
ent P	Ш														$\pm$			//														
Perce	H						#								#	#	`\	1	<b>k</b> .													
<b>-</b> 40	Ħ														$\pm$		•	`,	1													
	Ш						#								$\pm$			,,		$\searrow$	k					#						
30	H						#								$\pm$				<u> </u>													
							1							Ш	$\pm$					``												
20	H						-#								Ħ																	
															$\blacksquare$																	
10	H						#								#					Н												
															$\pm$																	
0	ш	Н	50		20	)			5			2			ш	5		2		Ш	Ш	)5		.02					005		.002	
1	00				-	,	10		,			-		1	G	.5 rain (	Size (	(mm)	0	0.1		,,,		.02		0.01			,05		.002	0.001
						Other	Tests								Pe	rcent	Passi	ng														
				k	k	•		,	$\Diamond$					*	$\Box$	•		<	>					*		•		$\Diamond$				
Liqu	id Lir	nit	L								Ma	ass (g		298.1		247	7.9	27	7.7			ı	D ₆₀									
Plas	tic Lir	mit	L										2"		$\dashv$								D ₃₀									
Plastic			L									1.5			$\dashv$					-			D ₁₀									
Water			ŀ	7.	.8	7.	1	(	5.6	4			1"		$\dashv$		0.0			-			Cu				+					
Dry De										-		3/4		100.0	)	81			0.00	-			C _C									
Specif			ŀ							-		3/8		93.1	-	78			5.8	1	Г	Rem	arks:									
Organi	rosity									+		# #1	_	87.1 78.8	$\dashv$	72 65			1.7 3.8	1												
	с Со рН	пеп	`									#1		69.5	$\dashv$	56			3.3	1												
Shrink		l imit	ŀ							1		#4		60.1	$\dashv$	47			2.7	1												
Pene			f							$\dashv$		#10		42.1	$\dagger$	31			2.9	†												
	ı (psf		f							$\exists$		#20		31.8	$\forall$	21			1.2	1												
(* = a																				1												
													E	O	IL	MID																



							Gr	ain	Siz	<u>e</u>	Dis	stri	bu	tio	n /	AS	ΤN	ΛC	)4	22					Jo	b N	lo. :	7	397
	Project: Po																									t D			29/10
Repor	ted To: Ba	rr Er	nginee	ering Co	mpany																			Re	po	rt D	ate:	5.	/3/10
	Location /	Borin	ng No.	Sa	mple No	<b>)</b> .	Dept		Samp Type										S	oil Cla	assificat	tion							
*	Jos		-6				9.5		Jar									c			w/grav		Δľ)						
•	<u>J</u> U.	37					9.5	-11	Jai	+								3	nty s	bariu	w/grav	/er (31	v1)						
$\Diamond$										+																			
, r	-																												
	Coa	rse	Grav		ine	+	Coarse	<del>.</del> T	M	ediu	San	d T		I	ine						ŀ	lydro	mete Fin		alys	IS			_
100	7	*	1 3		/8	#4		#10		#20	)	#40			#1(	00	#2	00											=
		$\overline{}$				$\blacksquare$				H																			
90			$\star$			Ш				Ш																			
										Ш																			
80						$\checkmark$																							
80																													
								*																					
70																													
										*																			
60										Ш		V																	
Percent Passing			+			$\blacksquare$				Ш		+	$\forall$										#						
<b>Š</b> 50													$\rightarrow$																
cent			$\blacksquare$			$\blacksquare$				Н				$\rightarrow$	$\exists$								+						
ية 40										Н					$\rightarrow$														
40										Ш						_													
2.0										Ш							$\rightarrow$												
30			$\blacksquare$			$\blacksquare$				Н													#						
20																													
										$^{\dagger \dagger}$													#						
10																													
0						Ш				Ш							Ш						Ш						
1	100		20	1	0	5		2		1	G	.5 Frain	Size	.2 (mr	n)	0	.1	.(	05		.02	(	0.01		.005	i	).	002	0.001
				Other Te	sts		_				Pe	rcent	Pass	sing			-									_			
		:	*	•	$\Diamond$	,				*		•	•		$\Diamond$						*		•		$\Diamond$				
Liqu	uid Limit						N	lass (g	J)	360	.4									D ₆₀									
Plas	stic Limit							2	2"					1					ı	D ₃₀									
Plasti	icity Index							1.5	5"	100	.0									D ₁₀									
Wate	r Content	8	5.4					1	"	91.2	2			1						Cu									
Dry De	ensity (pcf)							3/4	."	91.2	2									$C_{C}$									
Speci	fic Gravity							3/8	3"	87.4	1			1				I	Rem	arks:									
Po	orosity							#	4	81.3	3																		
Organ	ic Content							#1	0	74.3	3			$oldsymbol{\perp}$															
	pН							#2	0	65.9	)																		
Shrinl	kage Limit							#4	0	57.3	3																		
Pene	etrometer							#10	0	41.5	5																		
Q	u (psf)							#20	0	32.6	5				-														
(* = a	assumed)								-							_													
	9301 Br	wont	- A-10	South	Suito 1	107			Ē	<b>.</b>	OIL VGI	NF	E.F.	SIV	IG					В	loomir	aton	. NAin		oto	EE 1	20.24	26	

Project:		<u>Poly</u>	<u>met</u>		Job:	<u>7397</u>
Client:		Barr Engineer	ing Company		Date:	<u>5/3/10</u>
		Sample Info	ormation & Cl	assification		
Boring No.	J003	J027				
Sample No.						
Depth	0-2	4.5-6				
Sample Type	Jar	Jar				
Classification	Sapric Peat	Sapric Peat w/a few pieces of stems and wood (PT)				
Moisture Content (%)	328.7	287.3				
(1)	L	Organic (	Content (AST	M:D2974)		
Organic Content (%)	40.6	52.8				

## Attachment F

Depth to Bedrock Boring ID and Coordinate Location

# Table 1 Depth to Bedrock Data - Category 1 Stockpile

ID	Easting	Northing	Depth (ft)
26024	2899039.8	736964	40
07-551C	2897364.3	735116.6	17.6
10-571C	2895923.4	734404.5	30.4
10-572C	2896441.8	734404.9	11.7
10-573C	2898280.8	737636.9	9.5
10-574C	2897307.4	735649	17.7
MW-05-09	2898244.9	737485	13
SB-05-10	2898269	738706	4
TGP-4	2896257.1	734678.1	13.5
TGP-5	2895791.3	734529.8	14
TGP-6	2895633.1	735044.8	20
V06-126	2903006.8	740029.6	19
V06-128	2902328.4	739385.5	17
V06-131	2901635.8	739460.1	12
V06-132	2901651.5	740054.1	17
V06-136	2900980.5	738724.1	17
V06-137	2901002.6	739383.7	11
V06-138	2901064.1	739987.6	9
V06-140	2900373.5	738680.6	7
V06-141	2900395.6	739320.6	8
V06-144	2899740.1	738699.5	9
V06-145	2899745.8	739339.4	7
V06-65	2895040.6	733961.1	17
V06-66	2894289.1	733983	15
V06-67	2894284.9	734606.5	13
V06-70	2895664.2	733902.8	28
V06-72	2896411.4	734609.4	19
V06-73	2895535.3	734559	13
V06-74	2895036.4	734669.9	10
V06-75	2896998	735259.9	4
V06-78	2895002.7	735273.7	18
V06-79	2896983.9	735968.8	9
V06-80	2896344.1	735918.7	21
V06-82	2895031.4	735900.5	21
V06-83	2894388.2	735922.6	13
V06-84	2894346.5	735203.9	27
V06-85	2896399	736555.4	6
V06-86	2895690.2	736557.7	11
V06-87	2895043.7	736550.3	16
V06-89	2896293.1	737208.3	7
V06-90	2896936.3	737202.6	5
V06-91	2896943.8	736543	10
V06-92	2897554.1	736583.2	7
V06-93	2897594.4	735881	8
V06-94	2898224.5	735826	6
V06-95	2897588.7	735241	18
V06-96	2898243.3	736515.2	23
V06-98	2898091.5	737122.1	30



# Table 1 Depth to Bedrock Data - Category 1 Stockpile

ID	Easting	Northing	Depth (ft)
V07-01	2899023.2	737353	23
V07-02	2898514.5	737381.9	38
V07-03	2899061.7	738058.6	8
V07-04	2898428.3	738084.1	5
V07-05	2897726	738056.9	14
V07-06	2897023.8	738003.4	9
V07-11	2898325.7	738674.6	6
V07-12	2899051	738695.3	11
V07-63	2900915.3	738386	8



## Depth to Bedrock Data - Category 2/3 Stockpile

ID	Easting	Northing	Depth (ft)
RS-17B	2907889.1	737407.6	11
TGP-10	2909310.1	738095.3	8
TGP-11	2910688.5	738008.6	6
TGP-12	2909910.3	738355.4	5
TGP-13	2909796.2	737784.2	9
TGP-14	2909274.6	737622.7	3.5
TGP-15	2907926.4	737200.9	11.5
TGP-8	2908447.1	738022	4.5
TGP-9	2908811.7	737792.8	8.5
V06-01	2907933.1	737148.4	7
V06-02	2908129.2	737729.5	1.5
V06-03	2908513.2	737697.2	1
V06-05	2909041.7	737533.8	18
V06-06	2909041.1	738012.9	2
V06-07	2909056.9	738456	5
V06-101	2912232.7	739073.9	3
V06-102	2912313.9	739684.4	1
V06-110	2908769	737819	2
V06-117	2908673.8	737815.6	5
V06-12	2909786.3	737774.4	9
V06-13	2909749.7	738200.9	16
V06-16	2910334.1	737965.5	9
V06-17	2910399	738513.6	2
V06-30	2911731.7	738223.3	1
V06-31	2911780	738912.5	1
V06-32	2911071.3	738842.6	4.5
V06-33	2911003.2	738222.3	6
V06-37	2912981.5	738638.4	3
V06-38	2912944.6	739173.3	24
V06-39	2912963.5	739757.4	16
V06-54	2912322	738499.7	1



## Depth to Bedrock Data - Category 4 Stockpile

ID	Easting	Northing	Depth (ft)
26013	2903513.3	738815.5	8.7
26033	2903830.1	738320	8
26038	2902726.9	738789.4	9
26046	2903147.7	738180	5
26060	2903516.8	738812	10
00-327C	2903150.4	738883	5
00-329B	2902373	738564	13
00-330C	2903328.7	738664.9	5
00-333B	2902433.3	738668	10
00-335B	2902623.2	738332.7	17
00-336B	2902833.4	738642	11
00-338B	2902900.8	738360	11
00-343C	2903797.2	739094	7
00-357C	2902886.5	738494	5
05-447G	2902809.4	737893.4	10.8
07-557C	2903638.4	738135	9
99-301B	2902879.4	738507	8.5
99-302B	2904215.9	738942	9
99-303B	2902503.6	738527	14
99-305BC	2903421.5	738283.3	9
99-306B	2904003.4	738854	11
99-314B	2903067.8	739052	7
99-315B	2903635.2	739307	28
99-316B	2903380.4	739094	15
99-318C	2903736.5	738538	10
99-320C	2903377.2	738396	10
RS-05A	2902806.1	737941.6	13
RS-12	2903622.1	739320.2	22
V07-09	2903297.4	738671.4	5



# **Depth to Bedrock Data - Ore Surge Pile**

ID	Easting	Northing	Depth (ft)
26075	2905238	736082	6
RS-18A	2904940.5	736178.5	8
V06-23	2905971.6	736459.9	8.5
V06-24	2905987.3	736948.9	8
V07-77	2905558.9	735875.2	9



## Attachment G

**Underdrain Design Computations** 



Subject	PolyMet Mining
North	Met Project
Under	drain Design

Made by	EF
Checked by	GG
Approved b	yBRB

Job No	083-2209
Date	09/11/2008
Sheet No	o 1 of 8

#### **OBJECTIVE:**

The objective is to estimate the required underdrain pipe sizes capable of accommodating seepage flows due to consolidation of subgrade materials when subjected to waste rock loading. Four cases were analyzed:

- Case 1: A double drained layer assuming relatively pervious fractured bedrock and a hydraulic conductivity of subgrade soils of 1x10⁻⁷ cm/sec.
- Case 2: A single drained layer assuming impervious bedrock surface and a hydraulic conductivity of subgrade soils of  $1x10^{-7}$  cm/sec.
- Case 3: A double drained layer with a hydraulic conductivity of subgrade soils of  $1 \times 10^{-5}$  cm/sec.
- Case 4: A single drained layer with a subgrade soils hydraulic conductivity of 1x10⁻⁵ cm/sec.

#### **GIVEN:**

- Maximum depth to bedrock (see Attachment 2).
- Maximum height of stockpile fill year 1, year 5 and year 20 (see Attachment 2).
- Underdrain pipe layout configuration.

#### **GEOMETRY:**

• Figure 1 shows the depth to bedrock isopach map and site layout.

#### **MATERIAL PROPERTIES:**

• The parameters presented in Table 1 were used for the underdrain calculations.

Table 1 Material Parameters

Case	Parameter	Value
1 and 2	Consolidation coefficient (C _v ) (m ² /day) ¹	0.075
1 thru 4	Rock waste unit weight (kN/m ³ ) ¹	19.98
1 thru 4	Manning (ASD N-12) ²	0.012

¹ per Golder (2006)

² ASD (2007)



Subject	PolyMet Mining
Northl	Met Project
Under	drain Design

Made by	EF
Checked by	y GG
Approved	by BRB

Job No	083-2209
Date	09/11/2008
Sheet No	2 of 8

### **METHOD:**

#### **Flow Rate Calculation**

The seepage flow from the compressible soil layer can be calculated from Darcy's equation:

$$v = -K_s \frac{\partial h}{\partial z} \tag{1}$$

where: v = water flux;

 $K_s$  = coefficient of permeability; and

 $\partial h/\partial z$  = hydraulic gradient in the z direction.

The pressure head can be calculated from the developed pore water pressure:

$$h = \frac{u}{\gamma_w} \tag{2}$$

where: h = total head;

u = average pressure; and  $\gamma_w =$  water unit weight

One can utilize Terzaghi's consolidation theory to determine the pore pressure distribution within a compressible soil layer as:

$$u = \sum_{n=1}^{\infty} \left( \frac{1}{H} \int_0^{2H} u_i \sin \frac{n \pi z}{2H} dz \right) \sin \left( \frac{n \pi z}{2H} \right) \exp \left( \frac{-n^2 \pi^2 T_v}{4} \right)$$
 (3)

where: u = pore pressure;

H = length of the longest drainage path;

n = 2m + 1

z = location of point of evaluation in the z direction; and

 $T_v$  = nondimensional time factor is equal to  $C_v$  t /  $H^2$ , where  $C_v$  is the coefficient of consolidation and t is time.



Subject	PolyMet Mining
North	Met Project
Under	drain Design

Made by	EF
Cl1 1 1-	~ ~
Checked b	$^{\text{py}}$ GG
	1
Approved	by BRB
	2112

Job No	083-2209
Date	09/11/2008
Sheet No	9 3 of 8

For the case of a constant water pressure with depth, Equation 3 can be simplified to (Das 1997):

$$u_{(z,t)} = \sum_{m=0}^{m=\infty} \frac{2u_0}{M} \sin\left(\frac{Mz}{H}\right) \exp(-M^2 T_v)$$
 (4)

where:  $u_0$  = initial water pore pressure

 $M = (2m + 1) \pi/2$ 

Combining Equations 1, 2, and 4, one obtains the expression for Darcy's velocity as:

$$v_{(z,t)} = -\frac{Ks}{\gamma_w} \sum_{r=1}^{m=\infty} \frac{2 u_0}{H} \cos\left(\frac{M z}{H}\right) \exp(-M^2 T_v)$$
 (5)

For Case 1, where a double drained layer is assumed, the length of the longest drainage path (H) is equal to half of the total layer thickness. For Case 2, where a single drainage path is considered, the length of the longest drainage path (H) is equal to the total thickness of the compressible layer.

A flow rate reporting to a single underdrain pipe can be approximated as:

$$q = v_{(0,t)} A \tag{6}$$

where: q = flow rate;

 $v_{(0,t)}$  = water flux at z=0; and

A= loading area reporting to a single underdrain pipe;

Equation 6 was used to determine required underdrain pipe capacities.

### **Selection of Equivalent Loading Time**

Equations 5 and 6 assume instantaneous loading scenarios. In reality, the waste rock stockpiles are loaded gradually. Therefore, underdrain flows were determined for an equivalent loading time, the time expected to provide an estimate of a maximum seepage flow reporting to an underdrain pipe over the loading area under consideration. The following procedure was used to calculate the equivalent loading time in (days):

- Estimate the waste rock stockpile footprint;
- Calculate the area per day required to cover the waste rock stockpile footprint for the years 1, 5, 10, 15, and 20. The following equation was used:

 $area\ per\ day = rac{waste\ rock\ stockpile\ total\ area\ for\ the\ evaluated\ year}{number\ of\ days\ required\ to\ cover\ the\ area\ for\ the\ evaluated\ year}$ 



ubject PolyMet Mining	Made by
NorthMet Project	Checked by
Jnderdrain Design	Approved

nde by EF	Job No 083-2209
ecked by GG	Date 09/11/2008
proved by BRB	Sheet No 4 of 8

• Estimate the tertiary underdrain pipe tributary area (i.e., loading area reporting to a single tertiary pipe).

tributary area = maximum pipe length x maximum pipe spacing

• The number of days (equivalent loading time) required to cover the tributary area of an underdrain pipe is calculated by:

$$number\ of\ days = \frac{tributary\ area}{area\ per\ day}$$

• Both cumulative tertiary pipe flows and the corresponding tributary areas for years 1, 5, 10, 15, and 20 were considered for the primary and secondary pipe sizing.

#### **Discharge Rate Calculation**

Discharge rates were calculated from the Manning's equation:

$$Q = \frac{1.486 \, A \, R^{2/3} \, S^{1/2}}{n} \tag{7}$$

where: Q = pipe capacity (cfs);

n = Manning's "n";

A = cross-sectional flow area of the pipe (ft²);

R = hydraulic radius (ft), where R = A/P, P is the wetted perimeter in ft;

S = pipe slope (feet/foot)

For a specific full-flowing pipe the parameters n, A, and R could be defined as constants. The conveyance factor for a specific pipe size can then be defined as:

$$k = \frac{1.486 \, A \, R^{2/3}}{n} \tag{8}$$

After substituting Equation 8 in Equation 7, Manning's formula can be reduced to:

$$Q = k S^{1/2} (9)$$



Subject	PolyMet Mining	
North]	Met Project	
Under	drain Design	

Made by	EF
Checked by	GG
Approved by	BRB

Job No	083-2209
Date	09/11/2008
Sheet No	5 of 8

Equation 9 can be written as:

$$k = \frac{Q}{S^{1/2}} \tag{10}$$

Attachment 3 shows the conveyance factor for different pipe sizes (ADS, 2007).

#### **Tertiary Underdrain Pipes**

The tertiary underdrain pipes were designed based on:

- The tributary area (e.g 350 ft x 100 ft); and
- The flux rate at the calculated equivalent loading time (equal to the number of days required to cover the tributary area for a single underdrain pipe).

#### **Secondary Underdrain Collector Pipes**

The secondary underdrain pipes were designed to accommodate the time-variant flux from the tertiary underdrain pipes. The flow was calculated using the loading rate required to cover the corresponding stockpile footprint and the time required to load the corresponding tributary area:

$$Q_{secondary} = Av_{(0,T1)} + Av_{(0,T2)} \cdots + Av_{(0,Tn-1)} + Av_{(0,Tn)}$$
(11)

$$Q_{secondary} = A \sum_{T=1 \, day}^{T=n \, days} v_{(0,T)}$$
 (12)

where:

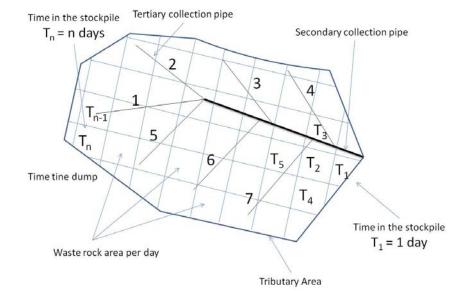
 $Q_{secondary} =$ water flow in the secondary pipe (volume per day);

A = calculated loading rate (area per day) required to cover the waste rock stockpile

footprint under consideration in N years;

 $v_{(0,T)}$  = calculated seepage rate at time T and Z=0 (see Equation 5);

The number of days "n" can be calculated from the following expression:


$$number\ of\ days = \frac{tributary\ area}{area\ per\ day}$$



Subject	PolyMet Mining
North	Met Project
Under	drain Design

Made by	EF
Checked by	GG
Approved by	BRB

Job No	083-2209
Date	09/11/2008
Sheet No	6 of 8



The tributary area "A" can be estimated by multiplying the tertiary pipe spacing (100 ft) with the total length of tertiary pipes.

### **ASSUMPTIONS:**

- Minimum drain pipe slope 0.5%;
- Compressible subgrade soil layer is homogenous;
- The compressible subgrade soil layer is saturated;
- Darcy's law is valid;
- The coefficient of consolidation C_v is constant during the consolidation;
- A factor of safety (FS) of 1.2 will be applied to the capacity of pipes;
- The maximum length for the Category 1 Stockpile tertiary underdrain pipe is 350 feet;
- The maximum pipe length for the waste rock stockpile tertiary underdrain collector pipe is 256 feet except for Category 1 Stockpile;
- The maximum spacing between tertiary underdrain pipes is 100 feet;
- The parameters in Table 2 were used for seepage calculations and underdrain pipe sizing.



Subject	PolyMet Mining
NorthN	let Project
Underd	Irain Design

Made by	EF
Checked by	y GG
Approved 1	by BRB

Job No	083-2209
Date	09/11/2008
Sheet No	7 of 8

Table 2
Assumed Material Parameters for Calculations

Case	Parameter	
1 and 2	Consolidation coefficient (C _v ) (m ² /day) ¹	0.075
1 and 2	Soil Hydraulic Conductivity (Ks) (cm/sec)	$1x10^{-7}$
3 and 4	Consolidation coefficient (C _v ) (m ² /day)	0.058
3 and 4	Soil Hydraulic Conductivity (Ks) (cm/sec)	$1x10^{-5}$

## **CALCULATIONS:**

### **Flow Rate Calculation**

Flow rate calculations for each considered case are shown in the following attachments:

•	Attachment 4-1:	Case 1 and Case 2, Category 1 Stockpile, year 1;
•	Attachment 4-1-1:	Case 1 and Case 2, Category 1 Stockpile, year 20;
•	Attachment 4-2:	Case 3 and Case 4, Category 1 Stockpile, year 1;
•	Attachment 4-2-1:	Case 3 and Case 4, Category 1 Stockpile, year 20;

•	Attachment 4-3:	Case 1 and Case 2, Ore Surge Pile, year 1;
•	Attachment 4-4:	Case 3 and Case 4, Ore Surge Pile, year 1;

•	Attachment 4-5:	Case 1 and Case 2, Category 4 Stockpile, year 1;
•	Attachment 4-5-1:	Case 1 and Case 2, Category 4 Stockpile, year 20;
•	Attachment 4-6:	Case 3 and Case 4, Category 4 Stockpile, year 1;
•	Attachment 4-6-1:	Case 3 and Case 4, Category 4 Stockpile, year 20;

Attachment 4-9:	Case 1 and Case 2, Category 2/3 Stockpile, year 1;
Attachment 4-9-1:	Case 1 and Case 2, Category 2/3 Stockpile, year 20;
Attachment 4-10:	Case 3 and Case 4, Category 2/3 Stockpile, year 1;
Attachment 4-10-1:	Case 3 and Case 4, Category 2/3 Stockpile, year 20;
	Attachment 4-9-1: Attachment 4-10:



Subject PolyMet Mining	Made by	EF
NorthMet Project	Checked by	GG
Underdrain Design	Approved by	BRB

F	Job N	No 083-2209
G	Date	09/11/2008
RB	Sheet	^{2 No} 8 of 8

### **Time Selection**

• The equivalent loading time calculations are shown in Attachment 5.

### **Tertiary Underdrain Pipes**

Detailed calculations used for the tertiary underdrain pipe sizing are enclosed as:

- Attachment 6-1: Calculations for Ks=1x10⁻⁷ cm/sec;
- Attachment 6-2: Calculations for Ks= 1x10⁻⁵ cm/sec.

### **Primary and Secondary Underdrain Pipes**

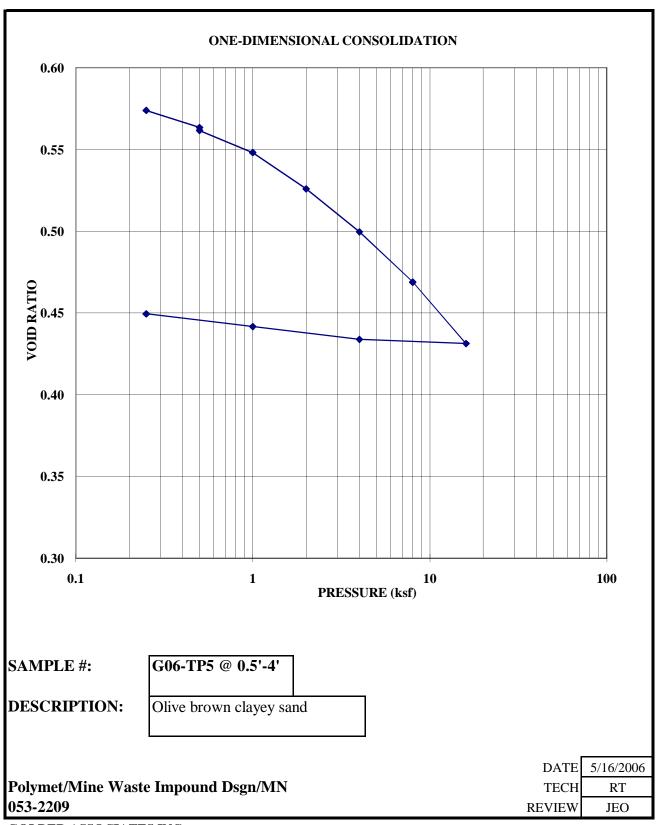
The primary and secondary underdrain pipes will be laid approximately perpendicular to the stockpile liner contours. The pipes were sized to collect the inflows from the corresponding tributary areas as shown in the following Attachments:

- Attachment 7-1: Category 1 Stockpile, year 1;
- Attachment 7-2 Ore Surge Pile, year 1;
- Attachment 7-3: Category 4 Stockpile, year 1;
- Attachment 7-5: Category 2/3 Stockpile, year 1;

#### **RESULTS:**

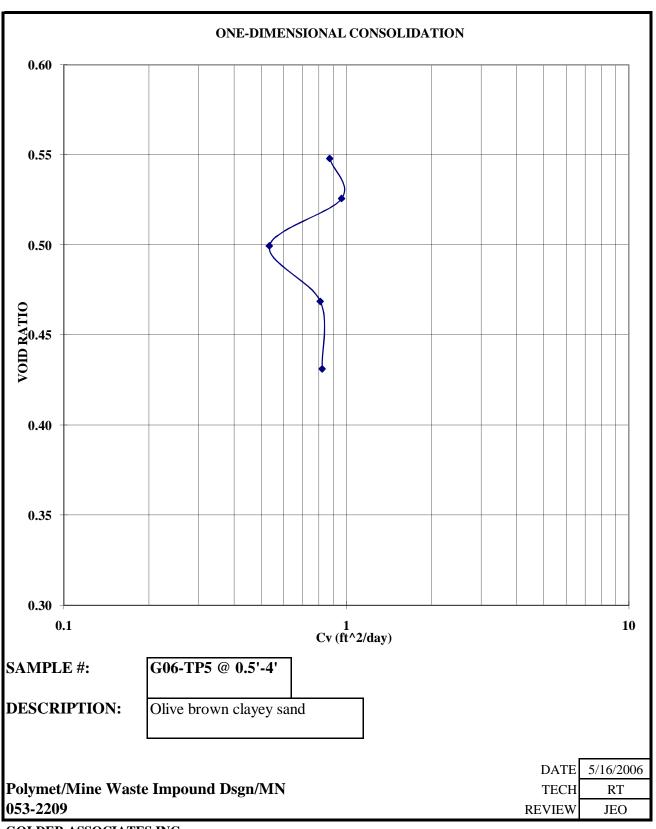
Calculations indicate that Case 4 is critical for the tertiary pipe sizing. The calculated pipe diameter varies from 6-inch to 18-inch.

#### **REFERENCES:**


Das, B. M. (1997). Advanced soil mechanics, Taylor & Francis, Washington, DC.

Advanced Drainage Systems, Inc. ADS (2007). Section 3 - Drainage handbook, Ohio. August, 2007.

## **ATTACHMENT 1 CONSOLIDATION PARAMETERS**


### ONE-DIMENSIONAL CONSOLIDATION ASTM D 2435

Polymet/M 053-2209	Iine Waste	Impound 1	Dsgn/MN	S	SAMPLE:	G06-TP5	@ 0.5'-4'				DATE TECH	5/16/2006 RT
				1							REVIEW	JEO
SAMPLE DATA, GENERAL				SAMPLE DATA, INITIAL				SAMPLE DATA, FINAL				
height (in) diameter (in) area (in^2) volume (in^3) specimen weight,wet (g) specimen weight,dry (g) water weight (g)  1.075 1.928 2.919 3.138 3.138 3.138 57.67 17.15			total height (in) height of solids (in) height of voids (in) void ratio dry density (pcf) moist density (pcf)  1.075 0.678 0.397 0.585 dry density (pcf) 106.2 127.2			total height (in) height of solids (in) height of voids (in) void ratio dry density (pcf) moist density (pcf)			0.982 0.678 0.304 0.448 116.5 139.8			
DESCRIPTION  Olive brown clayey sand			MOISTURE CONTENT, INITIAL tare # G5 wt soil&tare,moist 48.94			MOISTURE CONTENT, I tare # wt soil&tare,moist			FINAL M9 127.60 110.60			
LL: - PL: - PI: - Gs: 2.70 Assumed			wt soil&tare,dry wt tare wt moisture wt dry soil % moisture			43.22 13.98 5.72 29.24 19.6%	wt soil&tare,dry wt tare wt moisture wt dry soil % moisture			25.54 17.00 85.06 20.0%		
			<u> </u>				<u>I</u>	<u>I</u>				
PRESSURE (ksf)	h100 Sample Height	D50 Sample Height	t50 TIME (min)	Sample Density (pcf)	VOID RATIO e	DRAINAGE PATH (DOUBLE DRAINAGE) H (in) H (cm)		DRAINAGE PATH (DOUBLE DRAINAGE) H^2 (in^2) H^2 (cm^2)		COEFFICIENT OF CONSOLIDATION Cv (cm^2/sec) (ft^2/day)		Сс
0.250 0.500 0.500	1.0662 1.0591 1.0579	-	- - -	107.1 107.8 107.9	0.574 0.563 0.562		- - -	- - -	- - -	-	- - -	-
1.0 2.0 4.0 8.0 16.0 4.0 1.0 0.250	1.0487 1.0337 1.0159 0.9950 0.9696 0.9713 0.9766 0.9819	1.0542 1.0412 1.0236 1.0046 0.9822	0.6288 0.5571 0.9694 0.6170 0.5803	108.8 110.4 112.4 114.7 117.7 117.5 116.9 116.2	0.548 0.526 0.500 0.469 0.431 0.434 0.442 0.449	0.5271 0.5206 0.5118 0.5023 0.4911	1.3389 1.3224 1.3000 1.2759 1.2474	0.2778 0.2710 0.2619 0.2523 0.2412	1.7925 1.7487 1.6900 1.6279 1.5561	9.36E-03 1.03E-02 5.72E-03 8.66E-03 8.80E-03	8.73E-01 9.62E-01 5.34E-01 8.08E-01 8.21E-01	0.045 0.074 0.087 0.102 0.125
	SSOCIATES D, COLORA											



GOLDER ASSOCIATES INC.

LAKEWOOD, COLORADO



GOLDER ASSOCIATES INC. LAKEWOOD, COLORADO

# **ATTACHMENT 2** MAXIMUM DEPTHS TO BEDROCK

## Attachment 2: Bedrock Depths and Stockpile Heights For Various Years

				max	max	max	max	max	max
		max	max	height of	height of	height of	height of	height of	height of
	Draw and Charles in a second	depth to	depth to	stockpile	stockpile	stockpile	stockpile	stockpile	stockpile
	Proposed Stockpile name	bedrock	bedrock	fill	fill	fill	fill	fill	fill
		(ft)	(m)	1-yr	1-yr	5-yr	5-yr	20-yr	20-yr
				(ft)	(m)	(ft)	(m)	(ft)	(m)
1	Category 1 Stockpile	38	11.58	40	12.19	120	36.58	240	73.15
2	Ore Surge Pile	10	3.05	40	12.19	40	12.19	na	na
3	Category 4 Stockpile	28	8.53	40	12.19	80	24.38	90	27.43
5	Category 2/3 Stockpile	40	12.19	40	12.19	80	24.38	160	48.77

## **ATTACHMENT 3**

**CONVEYANCE FACTORS (ADS, 2007)** 

ADS, Inc. Drainage Handbook Hydraulics ♦ 3-10

Table 3-1 **Conveyance Factors (Standard Units)** 

Design Manning's Values for HDPE Pipe *						
Product	Diameter	Design Manning's "n"				
N-12 [®] , N-12 [®] ST, and N-12 [®] WT	4" - 60"	"n" = 0.012				
AASHTO and Single Wall	18" - 24"	"n" = 0.024				
	12" - 15"	"n" = 0.022				
	10"	"n" = 0.019				
	8"	"n" = 0.019				
	3" - 6"	"n" = 0.017				
Smoothwall	3" - 6"	"n" = 0.009 **				
Conveyance Equations: k = Q/(s^0.5) Q = k s^0.5						

	Conveyance Factors for Circular Pipe Flowing Full																	
	Manning's "n" Values																	
Dia. (in.)	Area (sq. ft.)	0.009	0.010	0.011	0.012	0.013	0.014	0.015	0.016	0.017	0.018	0.019	0.020	0.021	0.022	0.023	0.024	0.025
3	0.05	1.3	1.1	1.0	1.0	0.9	0.8	0.8	0.7	0.7	0.6	0.6	0.6	0.5	0.5	0.5	0.5	0.5
4	0.09	2.7	2.5	2.2	2.1	1.9	1.8	1.6	1.5	1.5	1.4	1.3	1.2	1.2	1.1	1.1	1.0	1.0
6	0.20	8.1	7.3	6.6	6.1	5.6	5.2	4.9	4.6	4.3	4.1	3.8	3.6	3.5	3.3	3.2	3.0	2.9
8	0.35	17.5	15.7	14.3	13.1	12.1	11.2	10.5	9.8	9.2	8.7	8.3	7.9	7.5	7.1	6.8	6.5	6.3
10	0.55	31.6	28.5	25.9	23.7	21.9	20.3	19.0	17.8	16.8	15.8	15.0	14.2	13.6	12.9	12.4	11.9	11.4
12	0.79	51.5	46.3	42.1	38.6	35.6	33.1	30.9	28.9	27.2	25.7	24.4	23.2	22.1	21.1	20.1	19.3	18.5
15	1.23	93.3	84.0	76.3	70.0	64.6	60.0	56.0	52.5	49.4	46.7	44.2	42.0	40.0	38.2	36.5	35.0	33.6
18	1.77	151.7	136.6	124.1	113.8	105.0	97.5	91.0	85.3	80.3	75.9	71.9	68.3	65.0	62.1	59.4	56.9	54.6
21	2.41	228.9	206.0	187.3	171.6	158.4	147.1	137.3	128.7	121.2	114.4	108.4	103.0	98.1	93.6	89.6	85.8	82.4
24	3.14	326.8	294.1	267.3	245.1	226.2	210.1	196.1	183.8	173.0	163.4	154.8	147.0	140.0	133.7	127.9	122.5	117.6
27	3.98	447.3	402.6	366.0	335.5	309.7	287.6	268.4	251.6	236.8	223.7	211.9	201.3	191.7	183.0	175.0	167.8	161.0
30	4.91	592.5	533.2	484.7	444.3	410.2	380.9	355.5	333.3	313.7	296.2	280.6	266.6	253.9	242.4	231.8	222.2	213.3
33	5.94	763.9	687.5	625.0	572.9	528.9	491.1	458.3	429.7	404.4	382.0	361.9	343.8	327.4	312.5	298.9	286.5	275.0
36	7.07	963.4	867.1	788.2	722.6	667.0	619.3	578.0	541.9	510.0	481.7	456.4	433.5	412.9	394.1	377.0	361.3	346.8
42	9.62	1453.2	1307.9	1189.0	1089.9	1006.1	934.2	871.9	817.5	769.4	726.6	688.4	654.0	622.8	594.5	568.7	545.0	523.2
45	11.04	1746.8	1572.1	1429.2	1310.1	1209.3	1122.9	1048.1	982.6	924.8	873.4	827.4	786.1	748.6	714.6	683.5	655.0	628.8
48	12.57	2074.8	1867.4	1697.6	1556.1	1436.4	1333.8	1244.9	1167.1	1098.4	1037.4	982.8	933.7	889.2	848.8	811.9	778.1	746.9
54	15.90	2840.5	2556.4	2324.0	2130.4	1966.5	1826.0	1704.3	1597.8	1503.8	1420.2	1345.5	1278.2	1217.4	1162.0	1111.5	1065.2	1022.6
60	19.63	3762.0	3385.8	3078.0	2821.5	2604.4	2418.4	2257.2	2116.1	1991.6	1881.0	1782.0	1692.9	1612.3	1539.0	1472.1	1410.7	1354.3
72	28.27	6117.3	5505.6	5005.1	4588.0	4235.1	3932.6	3670.4	3441.0	3238.6	3058.7	2897.7	2752.8	2621.7	2502.5	2393.7	2294.0	2202.2

^{*} Utah Water Research Laboratory, "Manning Friction Coefficient Testing of 4-, 10-, 12- and 15-inch Corrugated Plastic Pipe" ** "Lingedburg, Michael, "Civil Engineer Reference Manual" *

# **ATTACHMENT 4** FLOW RATE CALCULATIONS

Note: Project configuration has changed since the original preparation of this Attachment. For the SDEIS and FEIS, the Category 3 Lean Ore Stockpile has been eliminated, and the Lean Ore Surge Pile is referred to as the Ore Surge Pile.

## Attachment 4-1: Case 1 and Case 2, Category 1 Stockpile, year 1;

Column height	$H_{T}$	11.58 m
Hydrulic cond.	k	8.64E-05 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{s}$	19.98 kN/m^3
Load on surface	р	235.6 kN/m^2
Consolidation coef.	CV	0.075 m ² /day

	Flux Rate (m/day)				
	For z=	0.0			
	Case1	Case 2			
	Single drain	Double drain			
	$H=H_T$	H=0.5*H _T			
t (days)	11.6	5.8			
0	-3.583E-02	-7.165E-02			
1	-4.274E-03	-4.274E-03			
2	-3.022E-03	-3.022E-03			
4	-2.137E-03	-2.137E-03			
10	-1.352E-03	-1.352E-03			
20	-9.558E-04	-9.558E-04			
30	-7.804E-04	-7.804E-04			
50	-6.045E-04	-6.043E-04			
100	-4.274E-04	-4.177E-04			
200	-3.022E-04	-2.377E-04			
365	-2.204E-04	-9.563E-05			
1000	-9.018E-05	-2.877E-06			
2000	-2.270E-05	-1.155E-08			
3000	-5.714E-06	-4.637E-11			
4000	-1.438E-06	-1.862E-13			
5000	-3.621E-07	-7.474E-16			

## Attachment 4-1-1: Case 1 and Case 2, Category 1 Stockpile year 20;

Column height	$H_T$	11.58 m
Hydrulic cond.	k	8.64E-05 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{s}$	19.98 kN/m^3
Load on surface	р	1413.5 kN/m^2
Consolidation coef.	CV	0.075 m^2/day

	Flux Rate					
	m/day					
	For z= 0.0					
	Case 1	Case 2				
	Single drain	Double drain				
	$H=H_T$	$H=0.5^*H_T$				
t (days)	11.6	5.8				
0	-2.150E-01	-4.299E-01				
1	-2.565E-02	-2.565E-02				
2	-1.813E-02	-1.813E-02				
5	-1.147E-02	-1.147E-02				
10	-8.110E-03	-8.110E-03				
20	-5.735E-03	-5.735E-03				
43	-3.911E-03	-3.911E-03				
100	-2.565E-03	-2.506E-03				
200	-1.813E-03	-1.426E-03				
365	-1.322E-03	-5.738E-04				
400	-1.253E-03	-4.730E-04				
1000	-5.411E-04	-1.726E-05				
2000	-1.362E-04	-6.930E-08				
3000	-3.428E-05	-2.782E-10				
3650	-1.399E-05	-7.705E-12				
4000	-8.630E-06	-1.117E-12				
5000	-2.172E-06	-4.484E-15				

## Attachment 4-2: Case 3 and Case 4, Category 1 Stockpile, year 1;

Column height	$H_T$	11.58 m
Hydrulic cond.	k	8.64E-03 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{\text{s}}$	19.98 kN/m^3
Load on surface	р	235.6 kN/m^2
Consolidation coef.	CV	0.058 m^2/day

	Flux Rate m/day				
	For z= 0.0				
	Case 3	Case 4			
	Single drain	Double drain			
	$H=H_T$	H=0.5*H _⊤			
t (days)	11.6	5.8			
0	-3.583E+00	-7.165E+00			
1	-4.861E-01	-4.861E-01			
2	-3.437E-01	-3.437E-01			
4	-2.430E-01	-2.430E-01			
10	-1.537E-01	-1.537E-01			
20	-1.087E-01	-1.087E-01			
30	-8.874E-02	-8.874E-02			
50	-6.874E-02	-6.874E-02			
100	-4.861E-02	-4.831E-02			
200	-3.437E-02	-3.055E-02			
400	-2.415E-02	-1.300E-02			
1000	-1.233E-02	-1.005E-03			
2000	-4.243E-03	-1.409E-05			
3000	-1.460E-03	-1.976E-07			
4000	-5.024E-04	-2.771E-09			
5000	-1.729E-04	-3.885E-11			

## Attachment 4-2-1: Case 3 and Case 4, Category 1 Stockpile, year 20

Column height	$H_{T}$	11.58 m
Hydrulic cond.	k	8.64E-03 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{s}$	19.98 kN/m^3
Load on surface	р	1413.5 kN/m^2
Consolidation coef.	CV	0.058 m^2/day

	Flux Rate					
	m/day					
	For z=	0.0				
	Case 3	Case 4				
	Single drain	Double drain				
	$H=H_T$	$H=0.5*H_T$				
t (days)	11.6	5.8				
0	-2.150E+01	-4.299E+01				
1	-2.916E+00	-2.916E+00				
2	-2.062E+00	-2.062E+00				
5	-1.304E+00	-1.304E+00				
10	-9.222E-01	-9.222E-01				
20	-6.521E-01	-6.521E-01				
44	-4.397E-01	-4.397E-01				
100	-2.916E-01	-2.898E-01				
200	-2.062E-01	-1.833E-01				
365	-1.521E-01	-9.057E-02				
400	-1.449E-01	-7.800E-02				
1000	-7.399E-02	-6.029E-03				
2000	-2.546E-02	-8.454E-05				
3000	-8.760E-03	-1.185E-06				
3650	-4.379E-03	-7.402E-08				
4000	-3.014E-03	-1.662E-08				
5000	-1.037E-03	-2.331E-10				

## Attachment 4-3: Case 1 and Case 2, Ore Surge Pile, year 1

Column height	$H_{T}$	3.05 m
Hydrulic cond.	k	8.64E-05 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{\rm s}$	19.98 kN/m^3
Load on surface	р	235.6 kN/m^2
Consolidation coef.	CV	0.075 m^2/day

	Flux Rate		
	m/day		
	For z= 0.0		
	Case 1	Case 2	
	Single drain	Double drain	
	H=H _T	H=0.5*H _T	
t (days)	3.0	1.5	
0	-1.361E-01	-2.723E-01	
1	-4.274E-03	-4.274E-03	
2	-3.022E-03	-3.022E-03	
4	-2.137E-03	-2.135E-03	
10	-1.352E-03	-1.230E-03	
20	-9.519E-04	-5.533E-04	
30	-7.553E-04	-2.494E-04	
48	-5.236E-04	-5.944E-05	
100	-1.857E-04	-9.434E-07	
200	-2.534E-05	-3.269E-10	
400	-4.717E-07	-3.924E-17	
1000	-3.042E-12	-6.790E-38	
2000	-6.799E-21	-1.693E-72	
3000	-1.519E-29	-4.223E-107	
4000	-3.395E-38	-1.053E-141	
5000	-7.587E-47	-2.626E-176	

## Attachment 4-4: Case 3 and Case 4, Ore Surge Pile, year 1

Column height	$H_T$	3.05 m
Hydrulic cond.	k	8.64E-03 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{s}$	19.98 kN/m^3
Load on surface	р	235.6 kN/m^2
Consolidation coef.	CV	0.058 m^2/day

,			
	Flux Rate		
	m/day		
	For z= 0.0		
	Case 3	Case 4	
	Single drain	Double drain	
	$H=H_T$	H=0.5*H _⊤	
t (days)	3.0	1.5	
0	-1.361E+01	-2.723E+01	
1	-4.861E-01	-4.861E-01	
2	-3.437E-01	-3.437E-01	
4	-2.430E-01	-2.430E-01	
10	-1.537E-01	-1.481E-01	
20	-1.086E-01	-7.941E-02	
30	-8.789E-02	-4.288E-02	
48	-6.517E-02	-1.414E-02	
100	-2.917E-02	-5.742E-04	
200	-6.252E-03	-1.211E-06	
400	-2.871E-04	-5.384E-12	
1000	-2.780E-08	-4.734E-28	
2000	-5.677E-15	-8.232E-55	
3000	-1.159E-21	-1.431E-81	
4000	-2.367E-28	-2.489E-108	
5000	-4.834E-35	-4.328E-135	

## Attachment 4-5: Case 1 and Case 2, Category 4 Stockpile, year 1

Column height	$H_T$	8.53 m
Hydrulic cond.	k	8.64E-05 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{s}$	19.98 kN/m^3
Load on surface	р	235.6 kN/m^2
Consolidation coef.	CV	0.075 m^2/day

	Flux Rate m/day		
	For z= 0.0		
	Case 1	Case 2	
	Single drain	Double drain	
	$H=H_T$	$H=0.5^*H_T$	
t (days)	8.5	4.3	
0	-4.862E-02	-9.724E-02	
1	-4.274E-03	-4.274E-03	
2	-3.022E-03	-3.022E-03	
4	-2.137E-03	-2.137E-03	
10	-1.352E-03	-1.352E-03	
20	-9.558E-04	-9.558E-04	
30	-7.804E-04	-7.799E-04	
48	-6.169E-04	-6.091E-04	
100	-4.274E-04	-3.521E-04	
200	-2.975E-04	-1.274E-04	
400	-1.760E-04	-1.669E-05	
1000	-3.832E-05	-3.751E-08	
2000	-3.020E-06	-1.447E-12	
3000	-2.380E-07	-5.583E-17	
4000	-1.876E-08	-2.154E-21	
5000	-1.478E-09	-8.309E-26	

## Attachment 4-5-1: Case 1 and Case 2, Category 4 Stockpile, year 20

Column height	$H_{T}$	8.53 m
Hydrulic cond.	k	8.64E-05 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{s}$	19.98 kN/m^3
Load on surface	р	530.0 kN/m^2
Consolidation coef.	CV	0.075 m^2/day

ı		Б.	
	Flux Rate		
	m/day		
	For z= 0.0		
	Case 1	Case 2	
	Single drain	Double drain	
	$H=H_T$	H=0.5*H _T	
t (days)	8.5	4.3	
0	-1.094E-01	-2.188E-01	
1	-9.617E-03	-9.617E-03	
2	-6.800E-03	-6.800E-03	
5	-4.301E-03	-4.301E-03	
10	-3.041E-03	-3.041E-03	
20	-2.150E-03	-2.150E-03	
50	-1.360E-03	-1.339E-03	
100	-9.616E-04	-7.921E-04	
159	-7.593E-04	-4.348E-04	
365	-4.330E-04	-5.359E-05	
400	-3.961E-04	-3.755E-05	
1000	-8.622E-05	-8.441E-08	
2000	-6.795E-06	-3.256E-12	
3000	-5.355E-07	-1.256E-16	
4000	-4.220E-08	-4.846E-21	
5000	-3.326E-09	-1.869E-25	

## Attachment 4-6: Case 3 and Case 4, Category 4 Stockpile, year 1

Column height	$H_T$	8.53 m
Hydrulic cond.	k	8.64E-03 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{s}$	19.98 kN/m^3
Load on surface	р	235.6 kN/m^2
Consolidation coef.	CV	0.058 m^2/day

	Flux Rate		
	m/day		
	For z= 0.0		
	Case 3	Case 4	
	Single drain	Double drain	
	$H=H_T$	$H=0.5^*H_T$	
t (days)	8.5	4.3	
0	-4.862E+00	-9.724E+00	
1	-4.861E-01	-4.861E-01	
2	-3.437E-01	-3.437E-01	
5	-2.174E-01	-2.174E-01	
10	-1.537E-01	-1.537E-01	
20	-1.087E-01	-1.087E-01	
30	-8.874E-02	-8.874E-02	
48	-7.016E-02	-6.995E-02	
100	-4.861E-02	-4.440E-02	
200	-3.424E-02	-2.019E-02	
400	-2.220E-02	-4.193E-03	
1000	-6.816E-03	-3.755E-05	
2000	-9.555E-04	-1.450E-08	
3000	-1.339E-04	-5.600E-12	
4000	-1.878E-05	-2.162E-15	
5000	-2.632E-06	-8.350E-19	

## Attachment 4-6-1: Case 3 and Case 4, Category 4 Stockpile, year 20

Column height	$H_T$	8.53 m
Hydrulic cond.	k	8.64E-03 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{s}$	19.98 kN/m^3
Load on surface	р	530.0 kN/m^2
Consolidation coef.	CV	0.06 m^2/day

i				
	Flux Rate			
	m/day			
	For z= 0.0			
	Case 3	Case 4		
	Single drain	Double drain		
	H=H _T	H=0.5*H _T		
t (days)	8.5	4.3		
0	-1.094E+01	-2.188E+01		
1	-1.094E+00	-1.094E+00		
2	-7.733E-01	-7.733E-01		
5	-4.891E-01	-4.891E-01		
10	-3.458E-01	-3.458E-01		
20	-2.445E-01	-2.445E-01		
50	-1.547E-01	-1.541E-01		
100	-1.094E-01	-9.989E-02		
159	-8.667E-02	-6.271E-02		
365	-5.357E-02	-1.242E-02		
400	-4.995E-02	-9.435E-03		
1000	-1.534E-02	-8.449E-05		
2000	-2.150E-03	-3.263E-08		
3000	-3.014E-04	-1.260E-11		
4000	-4.225E-05	-4.865E-15		
5000	-5.922E-06	-1.879E-18		

## Attachment 4-7: Case 1 and Case 2, Category 3 Lean Ore Stockpile, year 1

Column height	$H_T$	6.71 m
Hydrulic cond.	k	8.64E-05 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{s}$	19.98 kN/m^3
Load on surface	р	235.6 kN/m^2
Consolidation coef.	CV	0.075 m ² /day

	Flux Rate		
	m/day		
	For z=	0.0	
	Case 1	Case 2	
	Single drain	Double drain	
	$H=H_T$	H=0.5*H _⊤	
t (days)	6.7	3.4	
0	-6.188E-02	-1.238E-01	
1	-4.274E-03	-4.274E-03	
2	-3.022E-03	-3.022E-03	
6	-1.745E-03	-1.745E-03	
10	-1.352E-03	-1.352E-03	
20	-9.558E-04	-9.547E-04	
30	-7.804E-04	-7.698E-04	
50	-6.045E-04	-5.442E-04	
100	-4.253E-04	-2.386E-04	
200	-2.721E-04	-4.600E-05	
400	-1.193E-04	-1.709E-06	
1000	-1.010E-05	-8.774E-11	
2000	-1.648E-07	-6.220E-18	
3000	-2.689E-09	-4.409E-25	
4000	-4.387E-11	-3.126E-32	
5000	-7.158E-13	-2.216E-39	

Underdrain Northmet Project
Project: 083-2209

## Attachment 4-7-1: Case 1 and Case 2, Category 3 Lean Ore Stockpile, year 20

Column height	$H_T$	6.71 m
Hydrulic cond.	k	8.64E-05 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{s}$	19.98 kN/m^3
Load on surface	р	1177.9 kN/m^2
Consolidation coef.	CV	0.075 m^2/day

İ			
	Flux Rate		
	m/day		
	For z= 0.0		
	Case 1	Case 2	
	Single drain	Double drain	
	$H=H_T$	H=0.5*H _T	
t (days)	6.7	3.4	
0	-3.094E-01	-6.188E-01	
1	-2.137E-02	-2.137E-02	
2	-1.511E-02	-1.511E-02	
5	-9.558E-03	-9.558E-03	
10	-6.758E-03	-6.758E-03	
20	-4.779E-03	-4.774E-03	
50	-3.022E-03	-2.721E-03	
93	-2.209E-03	-1.339E-03	
200	-1.360E-03	-2.300E-04	
365	-6.889E-04	-1.521E-05	
400	-5.965E-04	-8.547E-06	
1000	-5.049E-05	-4.387E-10	
2000	-8.238E-07	-3.110E-17	
3000	-1.344E-08	-2.205E-24	
4000	-2.193E-10	-1.563E-31	
5000	-3.579E-12	-1.108E-38	

## Attachment 4-8: Case 3 and Case 4, Category 3 Lean Ore Stockpile, year 1

Column height	$H_T$	6.71 m
Hydrulic cond.	k	8.64E-03 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{s}$	19.98 kN/m^3
Load on surface	р	235.6 kN/m^2
Consolidation coef.	CV	0.058 m^2/day

	Flux Rate		
	m/day		
	For z=	0.0	
	Case 3	Case 4	
	Single drain	Double drain	
	$H=H_T$	H=0.5*H _⊤	
t (days)	6.7	3.4	
0	-6.188E+00	-1.238E+01	
1	-4.861E-01	-4.861E-01	
2	-3.437E-01	-3.437E-01	
6	-1.984E-01	-1.984E-01	
10	-1.537E-01	-1.537E-01	
20	-1.087E-01	-1.087E-01	
50	-6.874E-02	-6.589E-02	
30	-8.874E-02	-8.846E-02	
100	-4.856E-02	-3.465E-02	
200	-3.294E-02	-9.701E-03	
400	-1.733E-02	-7.604E-04	
1000	-2.567E-03	-3.662E-07	
2000	-1.064E-04	-1.084E-12	
3000	-4.415E-06	-3.206E-18	
4000	-1.831E-07	-9.486E-24	
5000	-7.594E-09	-2.807E-29	

## Attachment 4-8-1: Case 3 and Case 4, Category 3 Lean Ore Stockpile, year 20

Column height	$H_T$	6.71 m
Hydrulic cond.	k	8.64E-03 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{\text{s}}$	19.98 kN/m^3
Load on surface	р	1177.9 kN/m^2
Consolidation coef.	CV	0.058 m^2/day

,			
	Flux Rate		
	m/day		
	For z=	0.0	
	Case 3	Case 4	
	Single drain	Double drain	
	$H=H_T$	$H=0.5*H_{T}$	
t (days)	6.7	3.4	
0	-3.094E+01	-6.188E+01	
1	-2.430E+00	-2.430E+00	
2	-1.718E+00	-1.718E+00	
5	-1.087E+00	-1.087E+00	
10	-7.685E-01	-7.685E-01	
20	-5.434E-01	-5.434E-01	
50	-3.437E-01	-3.294E-01	
93	-2.519E-01	-1.894E-01	
200	-1.647E-01	-4.851E-02	
365	-9.684E-02	-5.936E-03	
400	-8.663E-02	-3.802E-03	
1000	-1.283E-02	-1.831E-06	
2000	-5.322E-04	-5.418E-12	
3000	-2.207E-05	-1.603E-17	
4000	-9.155E-07	-4.743E-23	
5000	-3.797E-08	-1.403E-28	

## Attachment 4-9: Case 1 and Case 2, Category 2/3 Stockpile, year 1

Column height	$H_{T}$	12.19 m
Hydrulic cond.	k	8.64E-05 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{s}$	19.98 kN/m^3
Load on surface	р	235.6 kN/m^2
Consolidation coef.	CV	0.075 m^2/day

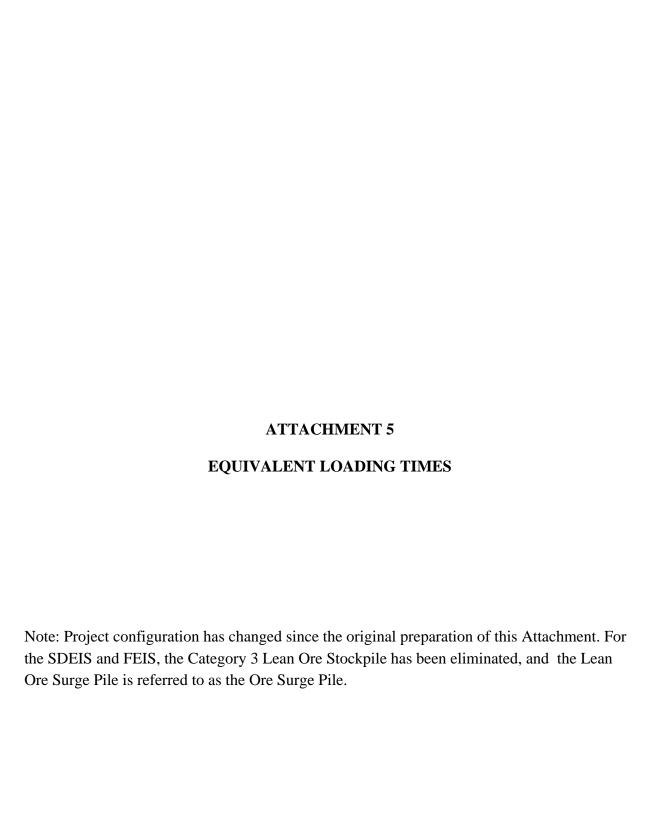
I	FI	Dete	
	Flux Rate		
	m/day		
	For z=		
	Case 1	Case 2	
	Single drain	Double drain	
	$H=H_T$	$H=0.5*H_T$	
t (days)	12.2	6.1	
0	-3.404E-02	-6.807E-02	
1	-4.274E-03	-4.274E-03	
2	-3.022E-03	-3.022E-03	
4	-2.137E-03	-2.137E-03	
10	-1.352E-03	-1.352E-03	
20	-9.558E-04	-9.558E-04	
36	-7.124E-04	-7.124E-04	
50	-6.045E-04	-6.044E-04	
100	-4.274E-04	-4.214E-04	
200	-3.022E-04	-2.515E-04	
365	-2.218E-04	-1.106E-04	
400	-2.107E-04	-9.287E-05	
1000	-9.801E-05	-4.680E-06	
2000	-2.822E-05	-3.218E-08	
3000	-8.127E-06	-2.212E-10	
4000	-2.340E-06	-1.521E-12	
5000	-6.738E-07	-1.046E-14	

## Attachment 4-9-1: Case 1 and Case 2, Category 2/3 Stockpile, year 20

Column height	$H_T$	12.19 m
Hydrulic cond.	k	8.64E-05 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{s}$	19.98 kN/m^3
Load on surface	р	942.3 kN/m^2
Consolidation coef.	CV	0.075 m^2/day

ĺ		Data	
	Flux Rate		
	m/day		
	For z=	0.0	
	Case 1	Case 2	
	Single drain	Double drain	
	$H=H_T$	$H=0.5^*H_T$	
t (days)	12.2	6.1	
0	-1.361E-01	-2.723E-01	
1	-1.710E-02	-1.710E-02	
2	-1.209E-02	-1.209E-02	
5	-7.646E-03	-7.646E-03	
10	-5.407E-03	-5.407E-03	
20	-3.823E-03	-3.823E-03	
50	-2.418E-03	-2.418E-03	
100	-1.710E-03	-1.686E-03	
228	-1.132E-03	-8.749E-04	
365	-8.871E-04	-4.422E-04	
400	-8.428E-04	-3.715E-04	
1000	-3.920E-04	-1.872E-05	
2000	-1.129E-04	-1.287E-07	
3000	-3.251E-05	-8.850E-10	
4000	-9.360E-06	-6.085E-12	
5000	-2.695E-06	-4.184E-14	

## Attachment 4-10: Case 3 and Case 4, Category 2/3 Stockpile, year 1


Column height	$H_T$	12.19 m
Hydrulic cond.	k	8.64E-03 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{s}$	19.98 kN/m^3
Load on surface	р	235.6 kN/m^2
Consolidation coef.	CV	0.06 m^2/day

	Flux Rate m/day					
	For z=					
	Case 3	Case 4				
	Single drain	Double drain				
	$H=H_T$	H=0.5*H _T				
t (days)	12.2	6.1				
0	-3.404E+00	-6.807E+00				
1	-4.861E-01	-4.861E-01				
2	-3.437E-01	-3.437E-01				
5	-2.174E-01	-2.174E-01				
10	-1.537E-01	-1.537E-01				
20	-1.087E-01	-1.087E-01				
36	-8.101E-02	-8.101E-02				
50	-6.874E-02	-6.874E-02				
100	-4.861E-02	-4.845E-02				
200	-3.437E-02	-3.158E-02				
365	-2.540E-02	-1.669E-02				
400	-2.422E-02	-1.459E-02				
1000	-1.300E-02	-1.447E-03				
2000	-4.962E-03	-3.076E-05				
3000	-1.895E-03	-6.539E-07				
4000	-7.235E-04	-1.390E-08				
5000	-2.763E-04	-2.955E-10				

## Attachment 4-10-1: Case 3 and Case 4, Category 2/3 Stockpile, year 20

Column height	$H_T$	12.19 m
Hydrulic cond.	k	8.64E-03 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{s}$	19.98 kN/m^3
Load on surface	р	942.3 kN/m^2
Consolidation coef.	CV	0.06 m^2/day

	Flux Rate						
	m,	/day					
	For $z = 0.0$						
	Case 3	Case 4					
	Single drain	Double drain					
	H=H _T	H=0.5*H _T					
t (days)	12.2	6.1					
0	-1.361E+01	-2.723E+01					
1	-1.944E+00	-1.944E+00					
2	-1.375E+00	-1.375E+00					
5	-8.695E-01	-8.695E-01					
10	-6.148E-01	-6.148E-01					
20	-4.347E-01	-4.347E-01					
50	-2.750E-01	-2.750E-01					
100	-1.944E-01	-1.938E-01					
200	-1.375E-01	-1.263E-01					
228	-1.288E-01	-1.133E-01					
400	-9.689E-02	-5.835E-02					
1000	-5.201E-02	-5.788E-03					
2000	-1.985E-02	-1.230E-04					
3000	-7.579E-03	-2.616E-06					
4000	-2.894E-03	-5.560E-08					
5000	-1.105E-03	-1.182E-09					



### Attachment 5: Equivalent Loading Times

### Waste Rock Stockpile Footprint ( ft2)

			Year 1	Year 5	Year 10	Year 15	Year 20
I	1	Category 1 Stockpile	3031253	13025197	16412619	16412619	16412619
	2	Lean Ore Surge Pile	2375443	2375442	2375884	2375442	2759736
I	3	Category 4 Stockpile	194781	1743009	2759691	2759736	
Ī	4	Category 3 Lean Ore Stockpile	1540756	2778949	4257310	6830487	6830487
Ī	5	Category 2/3 Stockpile	257713	1115804	2041077	3135871	3135871

### Area per day required to cover the footprint at the corresponding year

		ft ² /day	ft ² /day	ft ² /day	ft ² /day	ft ² /day
1	Category 1 Stockpile	8304.8	7137.1	4496.6	2997.7	2248.3
2	Lean Ore Surge Pile	6508.1	1301.6	650.9	433.9	378.0
3	Category 4 Stockpile	533.6	955.1	756.1	504.1	
4	Category 3 Lean Ore Stockpile	4221.3	1522.7	1166.4	1247.6	935.7
5	Category 2/3 Stockpile	706.1	611.4	559.2	572.8	429.6

#### Maximum Underdrain Pipe Tributary Area (350 ft x 100 ft and 256 ft x 100 ft)

		ft ²	ft ²	ft ²	ft ²	ft ²
1	Category 1 Stockpile	35000.0	35000.0	35000.0	35000.0	35000.0
2	Lean Ore Surge Pile	25600.0	25600.0	25600.0	25600.0	25600.0
3	Category 4 Stockpile	25600.0	25600.0	25600.0	25600.0	
4	Category 3 Lean Ore Stockpile	25600.0	25600.0	25600.0	25600.0	25600.0
5	Category 2/3 Stockpile	25600.0	25600.0	25600.0	25600.0	25600.0

### Number of Days Required to Cover the Maximum Tributary Area of a Under Drain Pipe

		Year 1	Year 5	Year 10	Year 15	Year 20	Years 1- 20
		Days	Days	Days	Days	Days	Total Days
1	Category 1 Stockpile	4	5	8	12	16	44
2	Lean Ore Surge Pile	4	20	39	59	68	190
3	Category 4 Stockpile	48	27	34	51		
4	Category 3 Lean Ore Stockpile	6	17	22	21	27	93
5	Category 2/3 Stockpile	36	42	46	45	60	228

## **ATTACHMENT 6**

## SIZING OF TERTIARY UNDERDRAIN PIPES

Note: Project configuration has changed since the original preparation of this Attachment. For the SDEIS and FEIS, the Category 3 Lean Ore Stockpile has been eliminated, and the Lean Ore Surge Pile is referred to as the Ore Surge Pile.

## Attachment 6-1: Tertiary underdrain pipe selection assuming Ks=1e-7 cm/sec

FLUX (m/day)

		. ,,					
		For Y	For Year 1		For Year 1		time
		Single layer	Double layer	days	Single layer	Double layer	days
1	Category 1 Stockpile	2.1E-03	2.1E-03	4	3.9E-03	3.9E-03	44
2	Lean Ore Surge Pile	2.1E-03	2.1E-03	4			
3	Category 4 Stockpile	6.2E-04	6.1E-04	48	7.6E-04	4.3E-04	159
4	Category 3 Lean Ore Stockpile	1.7E-03	1.7E-03	6	2.2E-03	1.3E-03	93
5	Category 2/3 Stockpile	7.1E-04	7.1E-04	36	1.1E-03	8.7E-04	228

		Factored FLUX	actored FLUX (m/day)		
		For Y	'ear 1	For Y	ear 20
		Single layer	Double layer	Single layer	Double layer
1	Category 1 Stockpile	2.6E-03	2.6E-03	4.7E-03	4.7E-03
2	Lean Ore Surge Pile	2.6E-03	2.6E-03		
3	Category 4 Stockpile	7.4E-04	7.3E-04	9.1E-04	5.2E-04
4	Category 3 Lean Ore Stockpile	2.1E-03	2.1E-03	2.7E-03	1.6E-03
5	Category 2/3 Stockpile	8.5E-04	8.5E-04	1.4E-03	1.0E-03

FLOW (ft3/sec)

		For Year 1		For Year 20	
		Single layer	Single layer Double layer		Double layer
1	Category 1 Stockpile	3.4E-03	3.4E-03	6.2E-03	6.2E-03
2	Lean Ore Surge Pile	3.4E-03	3.4E-03		
3	Category 4 Stockpile	9.8E-04	9.7E-04	1.2E-03	6.9E-04
4	Category 3 Lean Ore Stockpile	2.8E-03	2.8E-03	3.5E-03	2.1E-03
5	Category 2/3 Stockpile	1.1E-03	1.1E-03	1.8E-03	1.4E-03

		Commodity Fa	ctor k	S=0.5%		
		For Y	'ear 1	For Y	ear 20	
		Single layer	Double layer	Single layer	Double layer	
1	Category 1 Stockpile	0.048	0.048	0.088	0.088	
2	Lean Ore Surge Pile	0.048	0.048			
3	Category 4 Stockpile	0.0139	0.0137	0.0171	0.0098	
4	Category 3 Lean Ore Stockpile	0.039	0.039	0.050	0.030	
5	Category 2/3 Stockpile	0.016	0.016	0.026	0.020	

Selected Pipe Dia (in)

		Year 1		Year 20		
		Single layer Double layer		Single layer	Double layer	
2	Category 1 Stockpile	3	3	3	3	
3	Lean Ore Surge Pile	3	3			
4	Category 4 Stockpile	3	3	3	3	
5	Category 3 Lean Ore Stockpile	3	3	3	3	
6	Category 2/3 Stockpile	3	3	3	3	

Selected Pipe commodity value k (ASD 2008) n=0.012

		Colociou i ipo	commodity valu	O I (FIEL EGGS	)o.o.i_	
		Ye	ar 1	Year 20		
		Single layer	Double layer	Single layer	Double layer	
2	Category 1 Stockpile	1.0	1.0	1.0	1.0	
3	Lean Ore Surge Pile	1.0	1.0			
4	Category 4 Stockpile	1.0	1.0	1.0	1.0	
5	Category 3 Lean Ore Stockpile	1.0	1.0	1.0	1.0	
6	Category 2/3 Stockpile	1.0	1.0	1.0	1.0	

Attachment 6-2: Tertiary underdrain pipe selection assuming Ks=1e-5 cm/sec

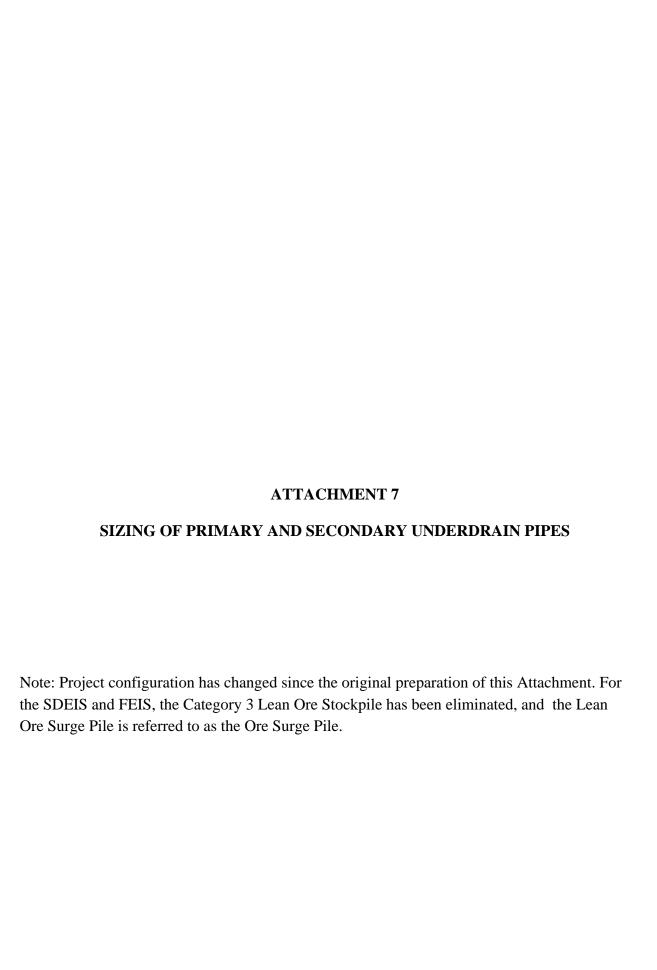
FLUX (m/day)

		Yea	ar 1	time	Yea	ır 20	time
		Single layer	Double layer	days	Single layer	Double layer	days
1	Category 1 Stockpile	2.4E-01	2.4E-01	4	4.4E-01	4.4E-01	44
2	Lean Ore Surge Pile	2.4E-01	2.4E-01	4			
3	Category 4 Stockpile	7.0E-02	7.0E-02	48	8.7E-02	6.3E-02	159
4	Category 3 Lean Ore Stockpile	2.0E-01	2.0E-01	6	2.5E-01	1.9E-01	93
5	Category 2/3 Stockpile	8.1E-02	8.1E-02	36	1.3E-01	1.1E-01	228

		Factored FLUX	Factored FLUX (m/day)					
		Yea	ar 1	Year 20				
		Single layer	Single layer	Double layer				
1	Category 1 Stockpile	2.9E-01	2.9E-01	5.3E-01	5.3E-01			
2	Lean Ore Surge Pile	2.9E-01	2.9E-01					
3	Category 4 Stockpile	8.4E-02	8.4E-02	1.0E-01	7.5E-02			
4	Category 3 Lean Ore Stockpile	2.4E-01	2.4E-01	3.0E-01	2.3E-01			
5	Category 2/3 Stockpile	9.7E-02	9.7E-02	1.5E-01	1.4E-01			

FLOW (ft3/sec)

			0 (	,			
			Yea	ar 1	Year 20		
			Single layer	Double layer	Single layer	Double layer	
I	1	Category 1 Stockpile	3.9E-01	3.9E-01	7.0E-01	7.0E-01	
Γ	2	Lean Ore Surge Pile	3.9E-01	3.9E-01			
Γ	3	Category 4 Stockpile	1.1E-01	1.1E-01	1.4E-01	1.0E-01	
I	4	Category 3 Lean Ore Stockpile	3.2E-01	3.2E-01	4.0E-01	3.0E-01	
I	5	Category 2/3 Stockpile	1.3E-01	1.3E-01	2.1E-01	1.8E-01	


		Commodity Fa	ctor k	S=0.5%			
		Yea	ar 1	Year 20			
		Single layer	Double layer	Single layer Double layer			
1	Category 1 Stockpile	5.5	5.5	9.9	9.9		
2	Lean Ore Surge Pile	5.5	5.5				
3	Category 4 Stockpile	1.6	1.6	2.0	1.4		
4	Category 3 Lean Ore Stockpile	4.5	4.5	5.7	4.3		
5	Category 2/3 Stockpile	1.8	1.8	2.9	2.6		

Selected Pipe Dia (in)

		Ociccica i ipc	Dia (III)			
		Yea	ar 1	Year 20		
		Single layer	Double layer	Single layer	Double layer	
2	Category 1 Stockpile	6	6	8	8	
3	Lean Ore Surge Pile	6	6			
4	Category 4 Stockpile	4	4	6	6	
5	Category 3 Lean Ore Stockpile	6	6	6	6	
6	Category 2/3 Stockpile	4	4	6	6	

Selected Pipe commodity value k (ASD 2008) n=0.012

		Yea	ar 1	Year 20		
		Single layer	Double layer	Single layer	Double layer	
2	Category 1 Stockpile	6.10	6.10	13.10	13.10	
3	Lean Ore Surge Pile	6.10	6.10			
4	Category 4 Stockpile	2.10	2.10	6.10	6.10	
5	Category 3 Lean Ore Stockpile	6.10	6.10	6.10	6.10	
6	Category 2/3 Stockpile	2.10	2.10	6.10	6.10	



## Attachment 7-1: Category 1 Stockpile, year 1;

 Column height
 H_T
 11.58 m

 Hydrulic cond.
 k
 8.64E-03 m/day

 Water density
 γ_w
 9.81 kN/m²3

 Soil density
 γ_s
 19.98 kN/m²3

 Load on surface
 p
 23.56 kN/m²2

 Consolidation coef.
 cv
 0.058 m²2/day

 time
 t
 1 day

Flux Rate
m/day
For z= 0.0
Case 3
Single drain
H=H _T
11.6

BRANCH 1	Diam I amenti de		Complete 1				Commission			
Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	T	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	240	24000.0	24000.0	8304.8	2.0	7.691E+02	0.3	4.4	8	
2	435	43500.0	67500.0	8304.8	8.0	3.076E+03	1.3	17.8	10	
3	535	53500.0	121000.0	8304.8	14.0	5.383E+03	2.2	31.1	12	
4	550	55000.0	176000.0	8304.8	21.0	8.075E+03	3,3	46.7	15	
5	560	56000.0	232000.0	8304.8	27.0	1.038E+04	4.2	60.0	15	
6	570	57000.0	289000.0	8304.8	34.0	1.307E+04	5.3	75.6	18	
7	520	52000.0	341000.0	8304.8	41.0	1.577E+04	6.4	91.1	18	
8	580	58000.0	399000.0	8304.8	48.0	1.846E+04	7.5	106.7	18	
9	550	55000.0	454000.0	8304.8	54.0	2.076E+04	8.5	120.0	21	
10	460	46000.0	500000.0	8304.8	60.0	2.307E+04	9.4	133.4	21	
11	430	43000.0	543000.0	8304.8	65.0	2.499E+04	10.2	144.5	21	
12	-	43000.0	543000.0	8304.8	65.0	2.499E+04	10.2	144.5	21	
13	30	3000.0	546000.0	7137.1	76.0	2.511E+04	10.2	145.2	21	
14	390	39000.0	585000.0	7137.1	81.0	2.677E+04	10.9	154.7	21	
15	320	32000.0	617000.0	7137.1	86.0	2.842E+04	11.6	164.3	21	
16	370	37000.0	654000.0	7137.1	91.0	3.007E+04	12.3	173.8	24	
17	410	41000.0	695000.0	7137.1	97.0	3.205E+04	13.1	185.3	24	
18	545	54500.0	749500.0	7137.1	105.0	3.470E+04	14.2	200.6	24	
19	590	59000.0	808500.0	7137.1	113.0	3.734E+04	15.3	215.9	24	
20	590	59000.0	867500.0	7137.1	121.0	3.999E+04	16.3	231.1	24	
21	510	51000.0	918500.0	7137.1	128.0	4.230E+04	17.3	244.5	24	
22	350	35000.0	953500.0	7137.1	133.0	4.395E+04	18.0	254.1	27	
23	700	70000.0	1023500.0	7137.1	143.0	4.726E+04	19.3	273.2	27	
24	700	70000.0	1093500.0	7137.1	153.0	5.056E+04	20.7	292.3	27	
25	700	70000.0	1163500.0	7137.1	163.0	5.386E+04	22.0	311.4	27	
26	700	70000.0	1233500.0	7137.1	172.0	5.684E+04	23.2	328.6	27	
27	700	70000.0	1303500.0	7137.1	182.0	6.014E+04	24.6	347.7	30	
28	700	70000.0	1373500.0	7137.1	192.0	6.345E+04	25.9	366.8	30	
29	700	70000.0	1443500.0	7137.1	202.0	6.675E+04	27.3	385.9	30	
30	700	70000.0	1513500.0	7137.1	212.0	7.006E+04	28.6	405.0	30	
31	700	70000.0	1583500.0	7137.1	221.0	7.303E+04	29.9	422.1	30	
32	700	70000.0	1653500.0	7137.1	231.0	7.634E+04	31.2	441.3	30	
33	700	70000.0	1723500.0	7137.1	241.0	7.964E+04	32.6	460.4	33	
34	700	70000.0	1793500.0	7137.1	251.0	8.295E+04	33.9	479.5	33	
35	700	70000.0	1863500.0	7137.1	261.0	8.625E+04	35.3	498.6	33	
36	700	70000.0	1933500.0	7137.1	270.0	8.922E+04	36.5	515.7	33	
37	700	70000.0	2003500.0	7137.1	280.0	9.253E+04	37.8	534.9	33	
38	700	70000.0	2073500.0	7137.1	290.0	9.583E+04	39.2	554.0	33	
39	700	70000.0	2143500.0	7137.1	300.0	9.914E+04	40.5	573.1	36	
39	-		3583200.0	7137.1	502.0	1.659E+05	67.8	958.9		inflow from branches # 7 & 6

### BRANCH 2

Segment 2	Plan Length of Tertiary Pipng (ft)	Tributary Area	Cumulated Tributary Area (ft ² )	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	330	33000.0	33000.0	7137.1	4.0	9.201E+02	0.4	5.3	8	
2	530	53000.0	86000.0	7137.1	12.0	1.854E+03	0.8	10.7	8	
3	600	60000.0	146000.0	7137.1	20.0	2.510E+03	1.0	14.5	10	
4	636	63600.0	209600.0	7137.1	29.0	3.107E+03	1.3	18.0	10	
5	680	68000.0	277600.0	7137.1	38.0	3.618E+03	1.5	20.9	10	
6	630	63000.0	340600.0	7137.1	47.0	4.072E+03	1.7	23.5	10	
7	360	36000.0	376600.0	7137.1	52.0	4.306E+03	1.8	24.9	12	
8	310	31000.0	407600.0	7137.1	57.0	4.529E+03	1.9	26.2	12	
9	470	47000.0	454600.0	7137.1	63.0	4.784E+03	2.0	27.7	12	
10	-		409800.0	7137.1	57.0	4.529E+03	1.9	26.2	12	inflow from branch#2a
11	580	58000.0	467800.0	7137.1	65.0	4.866E+03	2.0	28.1	12	
12	580	58000.0	525800.0	7137.1	73.0	5.184E+03	2.1	30.0	12	
13	650	65000.0	590800.0	7137.1	82.0	5.521E+03	2.3	31.9	12	
14	630	63000.0	653800.0	7137.1	91.0	5.839E+03	2.4	33.8	12	
15	630	63000.0	716800.0	7137.1	100.0	6.143E+03	2.5	35.5	12	
16	630	63000.0	779800.0	7137.1	109.0	6.433E+03	2.6	37.2	12	
17	500	50000.0	829800.0	7137.1	116.0	6.651E+03	2.7	38.4	12	
18	350	35000.0	864800.0	7137.1	121.0	6.803E+03	2.8	39.3	15	
19	280	28000.0	892800.0	7137.1	125.0	6.921E+03	2.8	40.0	15	

### BRANCH 2a

	Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft ² )	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
	1	1673	167300.0	167300.0	7137.1	23.0	2.721E+03	1.1	15.7	10	
	2	990	99000.0	266300.0	7137.1	37.0	3.565E+03	1.5	20.6	10	
Ī	3	605	60500.0	326800.0	7137.1	45.0	3.976E+03	1.6	23.0	10	
	4	550	55000.0	381800.0	7137.1	53.0	4.352E+03	1.8	25.2	12	
Ī	5	280	28000.0	409800.0	7137.1	57.0	4.529E+03	1.9	26.2	12	

### BRANCH 3

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	240	24000.0	24000.0	7137.1	3.0	7.549E+02	0.3	4.4	8	
2	480	48000.0	72000.0	7137.1	10.0	1.659E+03	0.7	9.6	8	
3	480	48000.0	120000.0	7137.1	16.0	2.202E+03	0.9	12.7	8	
4	640	64000.0	184000.0	7137.1	25.0	2.855E+03	1.2	16.5	10	
5	690	69000.0	253000.0	7137.1	35.0	3.455E+03	1.4	20.0	10	
6	350	35000.0	288000.0	7137.1	40.0	3.723E+03	1.5	21.5	10	
7	680	68000.0	356000.0	7137.1	49.0	4.167E+03	1.7	24.1	12	
8	-		646400.0	7137.1	90.0	5.805E+03	2.4	33.6	12	inflow from bracnh #3a
9	-		728900.0	7137.1	102.0	6.209E+03	2.5	35.9	12	inflow from branch #4
10	-		1621700.0	7137.1	227.0	9.486E+03	3.9	54.8	15	inflow from branch#2

#### BRANCH 3a

DRANCH 3a										
Segment	Pipng	Tributary Area	Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	1244	124400.0	124400.0	7137.1	17.0	2.282E+03	0.9	13.2	10	
2	990	99000.0	223400.0	7137.1	31.0	3.227E+03	1.3	18.7	10	
3	410	41000.0	264400.0	7137.1	37.0	3.565E+03	1.5	20.6	10	
4	50	5000.0	269400.0	7137.1	37.0	3.565E+03	1.5	20.6	10	
- 5	210	21000.0	200400.0	7127 1	40.0	2 722E+02	1.5	21.5	10	

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft ² )	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	150	15000.0	15000.0	7137.1	2.0	5.641E+02	0.2	3.3	8	
2	235	23500.0	38500.0	7137.1	5.0	1.068E+03	0.4	6.2	8	
3	240	24000.0	62500.0	7137.1	8.0	1.445E+03	0.6	8.4	8	
4	200	20000.0	82500.0	7137.1	11.0	1.759E+03	0.7	10.2	8	

### BRANCH 5

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft ² )	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	230	23000.0	23000.0	7137.1	3.0		. ,	4.4	8	
2	420	42000.0	65000.0	7137.1	9.0				8	
3	620	62000.0	127000.0	7137.1	17.0	2.282E+03	0.9	13.2	10	
4	510	51000.0	178000.0	7137.1	24.0	2.789E+03	1.1	16.1	10	
5	370	37000.0	215000.0	7137.1	30.0	3.167E+03	1.3	18.3	10	
6	150	15000.0	230000.0	7137.1	32.0	3.285E+03	1.3	19.0	10	
7	160	16000.0	246000.0	7137.1	34.0	3.399E+03	1.4	19.7	10	

BRANCH 6

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	190	19000.0	19000.0	7137.1	2.0	5.641E+02	0.2	3.3	8	
2	210	21000.0	40000.0	7137.1	5.0	1.068E+03	0.4	6.2	8	
3	760	76000.0	116000.0	7137.1	16.0	2.202E+03	0.9	12.7	8	
4	1108	110800.0	226800.0	7137.1	31.0	3.227E+03	1.3	18.7	10	
5	1013	101300.0	328100.0	7137.1	45.0	3.976E+03	1.6	23.0	10	
6	232	23200.0	351300.0	7137.1	49.0	4.167E+03	1.7	24.1	12	
7	257	25700.0	451000.0	7137.1	63.0	4.784E+03	2.0	27.7	12	includes inflow from branch #6a
8	360	36000.0	487000.0	7137.1	68.0	4.987E+03	2.0	28.8	12	
9	620	62000.0	549000.0	7137.1	76.0	5.298E+03	2.2	30.6	12	
10	670	67000.0	616000.0	7137.1	86.0	5.664E+03	2.3	32.7	12	
11	700	70000.0	686000.0	7137.1	96.0	6.010E+03	2.5	34.7	12	
12	700	70000.0	756000.0	7137.1	105.0	6.306E+03	2.6	36.5	12	
13	700	70000.0	826000.0	7137.1	115.0	6.620E+03	2.7	38.3	12	
14	700	70000.0	896000.0	7137.1	125.0	6.921E+03	2.8	40.0	15	
15	350	35000.0	931000.0	7137.1	130.0	7.068E+03	2.9	40.9	15	
16	-		1177000.0	7137.1	164.0	7.994E+03	3.3	46.2	15	inflow from branch #5

BRANCH 6a

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	740	74000.0	74000.0	7137.1	10.0	1.659E+03	0.7	9.6	8	

BRANCH 7

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	490	49000.0	49000.0	7137.1	6.0	1.203E+03	0.5	7.0	8	
2	360	36000.0	85000.0	7137.1	11.0	1.759E+03	0.7	10.2	8	
3	370	37000.0	122000.0	7137.1	17.0	2.282E+03	0.9	13.2	10	
4	610	61000.0	183000.0	7137.1	25.0	2.855E+03	1.2	16.5	10	
5	570	57000.0	240000.0	7137.1	33.0	3.343E+03	1.4	19.3	10	
6	330	33000.0	273000.0	7137.1	38.0	3.618E+03	1.5	20.9	10	
7	970	97000.0	370000.0	7137.1	51.0	4.260E+03	1.7	24.6	12	
8	262	26200.0	396200.0	7137.1	55.0	4.441E+03	1.8	25.7	12	
9	340	34000.0	430200.0	7137.1	60.0	4.658E+03	1.9	26.9	12	
10	330	33000.0	463200.0	7137.1	64.0	4.825E+03	2.0	27.9	12	
11	455	45500.0	508700.0	7137.1	71.0	5.106E+03	2.1	29.5	12	
12	-		583700.0	7138.1	81.0	5.485E+03	2.2	31.7	12	inflow from branch #8

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	85	8500.0	8500.0	7137.1	1.0	3.305E+02	0.1	1.9	8	
2	355	35500.0	44000.0	7137.1	6.0	1.203E+03	0.5	7.0	8	
3	250	25000.0	69000.0	7137.1	9.0	1.555E+03	0.6	9.0	8	
4	60	6000.0	75000.0	7137.1	10.0	1.659E+03	0.7	9.6	8	

DDA	NCH 9
DKA	

	Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
ſ	1	110	11000.0	11000.0	7137.1	1.0	3.305E+02	0.1	1.9	8	
	2	380	38000.0	49000.0	7137.1	6.0	1.203E+03	0.5	7.0	8	
	3	410	41000.0	90000.0	7137.1	12.0	1.854E+03	0.8	10.7	8	
	4	300	30000.0	120000.0	7137.1	16.0	2.202E+03	0.9	12.7	8	
ſ	5	234	23400.0	143400.0	7137.1	20.0	2.510E+03	1.0	14.5	10	

### BRANCH 10

Segment	Plan Length of Tertiary Pipng		Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	240	24000.0	24000.0	7137.1	3.0	7.549E+02	0.3	4.4	8	
2	500	50000.0	74000.0	7137.1	10.0	1.659E+03	0.7	9.6	8	
3	650	65000.0	139000.0	7137.1	19.0	2.436E+03	1.0	14.1	10	
4	700	70000.0	209000.0	7137.1	29.0	3.107E+03	1.3	18.0	10	
5	700	70000.0	279000.0	7137.1	39.0	3.671E+03	1.5	21.2	10	
6	700	70000.0	349000.0	7137.1	48.0	4.120E+03	1.7	23.8	12	
7	200	20000.0	369000.0	7137.1	51.0	4.260E+03	1.7	24.6	12	
8	140	14000.0	526400.0	7137.1	73.0	5.184E+03	2.1	30.0	12	includes inflow from branch #9

BRANCH 11

DRANCHII										1
Segment	Plan Length of Tertiary Pipng		Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	180	18000.0	18000.0	7137.1	2.0	5.641E+02	0.2	3.3	8	
2	320	32000.0	50000.0	7137.1	7.0	1.328E+03	0.5	7.7	8	
3	370	37000.0	87000.0	7137.1	12.0	1.854E+03	0.8	10.7	8	
4	-		202200.0	7137.1	28.0	3.046E+03	1.2	17.6	10	inflow from branch #11a
5	700	70000.0	272200.0	7137.1	38.0	3.618E+03	1.5	20.9	10	
6	630	63000.0	335200.0	7137.1	46.0	4.024E+03	1.6	23.3	10	
7	375	37500.0	372700.0	7137.1	52.0	4.306E+03	1.8	24.9	12	
8	100	10000.0	382700.0	7137.1	53.0	4.352E+03	1.8	25.2	12	
9	-		909100.0	7138.1	127.0	6.981E+03	2.9	40.4	15	inflow from branch #10
10	-		2578700.0	7139.1	361.0	1.208E+04	4.9	69.9	15	inflow from branch #12

BRANCH 11a

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	502	50200.0	50200.0	7137.1	7.0	1.328E+03	0.5	7.7	8	
2	315	31500.0	81700.0	7137.1	11.0	1.759E+03	0.7	10.2	8	
3	335	33500.0	115200.0	7137.1	16.0	2.202E+03	0.9	12.7	8	

BRANCH 12

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	350	35000.0	35000.0	8304.8	4.0	1.071E+03	0.4	6.2	8	
2	490	49000.0	84000.0	8304.8	10.0	1.931E+03	0.8	11.2	8	
3	570	57000.0	141000.0	8305.8	16.0	2.563E+03	1.0	14.8	10	
4	530	53000.0	194000.0	8306.8	23.0	3.167E+03	1.3	18.3	10	
5	490	49000.0	243000.0	8307.8	29.0	3.617E+03	1.5	20.9	10	
6	-		893500.0	8308.8	107.0	7.416E+03	3.0	42.9	15	inflow from branch #12b
7	=		893500.0	8309.8	107.0	7.417E+03	3.0	42.9	15	inflow from branch #12c
8	270	27000.0	920500.0	8310.8	110.0	7.528E+03	3.1	43.5	15	
9	480	48000.0	968500.0	8311.8	116.0	7.746E+03	3.2	44.8	15	
10	700	70000.0	1038500.0	8312.8	124.0	8.027E+03	3.3	46.4	15	
11	-		1256000.0	8313.8	151.0	8.914E+03	3.6	51.5	15	inflow from branch #12d
12	350	35000.0	1291000.0	8314.8	155.0	9.039E+03	3.7	52.3	15	
13	=		1354600.0	8315.8	162.0	9.254E+03	3.8	53.5	15	inflow from branch #12e
14	440	44000.0	1398600.0	8316.8	168.0	9.435E+03	3.9	54.5	15	
15	700	70000.0	1468600.0	8317.8	176.0	9.671E+03	4.0	55.9	15	
16	700	70000.0	1538600.0	8318.8	184.0	9.901E+03	4.0	57.2	15	
17	700	70000.0	1608600.0	8319.8	193.0	1.015E+04	4.2	58.7	15	
18	610	61000.0	1669600.0	8320.8	200.0	1.035E+04	4.2	59.8	15	

BRANCH 12a

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area	Cumulated Tributary Area (ft ² )	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	355	35500.0	35500.0	8304.8	4.0	1.071E+03	0.4	6.2	8	
2	345	34500.0	70000.0	8304.8	8.0	1.681E+03	0.7	9.7	8	
3	190	19000.0	89000.0	8305.8	10.0	1.931E+03	0.8	11.2	8	
4	100	10000.0	99000.0	8306.8	11.0	2.047E+03	0.8	11.8	8	

DD	A N	$\alpha$	12h

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	350	35000.0	35000.0	8304.8	4.0	1.071E+03	0.4	6.2	8	
2	410	41000.0	76000.0	8304.8	9.0	1.809E+03	0.7	10.5	8	
3	480	48000.0	124000.0	8305.8	14.0	2.367E+03	1.0	13.7	10	
4	560	56000.0	180000.0	8306.8	21.0	3.005E+03	1.2	17.4	10	
5	650	65000.0	245000.0	8307.8	29.0	3.617E+03	1.5	20.9	10	
6	700	70000.0	315000.0	8308.8	37.0	4.150E+03	1.7	24.0	12	
7	680	68000.0	482000.0	8309.8	58.0	5.324E+03	2.2	30.8	12	includes inflow from branch # 12a
8	475	47500.0	529500.0	8310.8	63.0	5.571E+03	2.3	32.2	12	
9	395	39500.0	569000.0	8311.8	68.0	5.808E+03	2.4	33.6	12	
10	515	51500.0	620500.0	8312.8	74.0	6.082E+03	2.5	35.2	12	
11	300	30000.0	650500.0	8313.8	78.0	6.259E+03	2.6	36.2	12	

### BRANCH 12c

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft ² )	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	320	32000.0	32000.0	8304.8		8.784E+02		5.1	8	
2	475	47500.0	79500.0	8304.8				10.5	8	
3	635	63500.0	143000.0	8305.8	17.0	2.656E+03	1.1	15.4	10	
4	660	66000.0	209000.0	8306.8	25.0	3.323E+03	1.4	19.2	10	
5	600	60000.0	269000.0	8307.8	32.0	3.824E+03	1.6	22.1	10	
6	180	18000.0	287000.0	8308.8	34.0	3.958E+03	1.6	22.9	10	

### BRANCH 12d

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft ² )	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	100	10000.0	10000.0	8304.8	1.0	3.845E+02	0.2	2.2	8	
2	275	27500.0	37500.0	8304.8	4.0	1.071E+03	0.4	6.2	8	
3	480	48000.0	85500.0	8305.8	10.0	1.931E+03	0.8	11.2	8	
4	525	52500.0	138000.0	8306.8	16.0	2.563E+03	1.0	14.8	10	
5	295	29500.0	167500.0	8307.8	20.0	2.922E+03	1.2	16.9	10	
6	440	44000.0	211500.0	8308.8	25.0	3.324E+03	1.4	19.2	10	
7	60	6000.0	217500.0	8309.8	26.0	3.399E+03	1.4	19.7	10	

### BRANCH 12e

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	136	13600.0	13600.0	8304.8	1.0	3.845E+02	0.2	2.2	8	
2	230	23000.0	36600.0	8304.8	4.0	1.071E+03	0.4	6.2	8	
3	170	17000.0	53600.0	8305.8	6.0	1.400E+03	0.6	8.1	8	
4	100	10000.0	63600.0	8306.8	7.0	1.545E+03	0.6	8.9	8	

### BRANCH 13

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft ² )	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	430	43000.0	43000.0	8304.8	5.0	1.243E+03	0.5	7.2	8	
2	620	62000.0	105000.0	8304.8	12.0	2.158E+03	0.9	12.5	8	
3	670	67000.0	172000.0	8305.8	20.0	2.921E+03	1.2	16.9	10	
4	600	60000.0	232000.0	8306.8	27.0	3.472E+03	1.4	20.1	10	
5	550	55000.0	287000.0	8307.8	34.0	3.957E+03	1.6	22.9	10	
6	410	41000.0	328000.0	8308.8	39.0	4.274E+03	1.7	24.7	12	
7	260	26000.0	354000.0	8309.8	42.0	4.455E+03	1.8	25.8	12	

Segment	Plan Length of Tertiary Pipng		Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	420	42000.0	42000.0	8304.8	5.0	1.243E+03	0.5	7.2	8	
2	225	22500.0	64500.0	8304.8	7.0	1.545E+03	0.6	8.9	8	
3	245	24500.0	89000.0	8305.8	10.0	1.931E+03	0.8	11.2	8	
4	225	22500.0	111500.0	8306.8	13.0	2.265E+03	0.9	13.1	8	
5	-		601500.0	8307.8	72.0	5.989E+03	2.4	34.6	12	inflow from branches #14b & 14c
6	-		601500.0	8308.8	72.0	5.990E+03	2.4	34.6	12	
7	420	42000.0	643500.0	8309.8	77.0	6.212E+03	2.5	35.9	12	
8	470	47000.0	690500.0	8310.8	83.0	6.471E+03	2.6	37.4	12	
9	665	66500.0	757000.0	8311.8	91.0	6.801E+03	2.8	39.3	15	
10	690	69000.0	826000.0	8312.8	99.0	7.117E+03	2.9	41.1	15	
11	500	50000.0	876000.0	8313.8	105.0	7.346E+03	3.0	42.5	15	
12	180	18000.0	894000.0	8314.8	107.0	7.421E+03	3.0	42.9	15	
12	-		1248000.0	8315.8	150.0	8.885E+03	3.6	51.4	15	inflow from branch #13
13	140	14000.0	1262000.0	8316.8	151.0	8.917E+03	3.6	51.5	15	
14	-		1396000.0	8317.8	167.0	9.406E+03	3.8	54.4	15	inflow from branch #15

BRA	NCH	14a

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	305	30500.0	30500.0	8304.8	3.0	8.784E+02	0.4	5.1	8	
2	605	60500.0	91000.0	8304.8	10.0	1.931E+03	0.8	11.2	8	
3	645	64500.0	155500.0	8305.8	18.0	2.747E+03	1.1	15.9	10	
4	515	51500.0	207000.0	8306.8	24.0	3.246E+03	1.3	18.8	10	
5	430	43000.0	250000.0	8307.8	30.0	3.687E+03	1.5	21.3	10	
6	305	30500.0	280500.0	8308.8	33.0	3.892E+03	1.6	22.5	10	
7	200	20000.0	300500.0	8309.8	36.0	4.087E+03	1.7	23.6	10	

### BRANCH 14b

Segment	Teruary Pipng	Tributary Area	1 ributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	305	30500.0	30500.0	8304.8	3.0	8.784E+02	0.4	5.1	8	
2	620	62000.0	92500.0	8304.8	11.0	2.047E+03	0.8	11.8	8	
3	350	35000.0	127500.0	8305.8	15.0	2.467E+03	1.0	14.3	10	
4	-		300500.0	8306.8	36.0	4.086E+03	1.7	23.6	10	inflow from branch #14a

#### BRANCH 14c

DIGITION										
Segment	Teruary Piping	Tributary Area	1ributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	230	23000.0	23000.0	8304.8	2.0	6.564E+02	0.3	3.8	8	
2	360	36000.0	59000.0	8304.8	7.0	1.545E+03	0.6	8.9	8	
3	640	64000.0	123000.0	8305.8	14.0	2.367E+03	1.0	13.7	10	
4	665	66500.0	189500.0	8306.8	22.0	3.087E+03	1.3	17.8	10	

#### BRANCH 15

Segment	Plan Length of Tertiary Pipng (ft)		Cumulated Tributary Area (ft ² )	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	400	40000.0	40000.0	8304.8	4.0	1.071E+03	0.4	6.2	8	
2	350	35000.0	75000.0	8304.8	9.0	1.809E+03	0.7	10.5	8	
3	410	41000.0	116000.0	8305.8	13.0	2.265E+03	0.9	13.1	8	
4	180	18000.0	134000.0	8306.8	16.0	2 563F±03	1.0	14.8	10	

### BRANCH 16

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	200	20000.0	20000.0	8304.8	2.0	6.564E+02	0.3	3.8	8	
2	505	50500.0	70500.0	8304.8	8.0	1.681E+03	0.7	9.7	8	
3	660	66000.0	136500.0	8305.8	16.0	2.563E+03	1.0	14.8	10	
4	510	51000.0	187500.0	8306.8	22.0	3.087E+03	1.3	17.8	10	
5	640	64000.0	251500.0	8307.8	30.0	3.687E+03	1.5	21.3	10	
6	375	37500.0	289000.0	8308.8	34.0	3.958E+03	1.6	22.9	10	
7	-		446500.0	8309.8	53.0	5.067E+03	2.1	29.3	12	inflow from branch #16a
8	-		538000.0	8310.8	64.0	5.619E+03	2.3	32.5	12	inflow from branch #16b
9	410	41000.0	579000.0	8311.8	69.0	5.855E+03	2.4	33.8	12	
10	495	49500.0	628500.0	8312.8	75.0	6.127E+03	2.5	35.4	12	
11	916	91600.0	720100.0	8313.8	86.0	6.598E+03	2.7	38.1	12	
12	435	43500.0	763600.0	8314.8	91.0	6.803E+03	2.8	39.3	15	
13	460	46000.0	809600.0	8315.8	97.0	7.042E+03	2.9	40.7	15	
14	200	20000.0	829600.0	8316.8	99.0	7.120E+03	2.9	41.2	15	

#### BRANCH 16a

-	DICTION										
	Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
ı		(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
	1	55	5500.0	5500.0	8304.8	1.0	3.845E+02	0.2	2.2	8	
ſ	2	565	56500.0	62000.0	8304.8	7.0	1.545E+03	0.6	8.9	8	
ſ	3	610	61000.0	123000.0	8305.8	14.0	2.367E+03	1.0	13.7	10	
ı	4	245	3/15/00 0	157500.0	8306.8	18.0	2.747E±03	1.1	15.0	10	

### BRANCH 16b

Segment	Plan Length of Tertiary Pipng		Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	340	34000.0	34000.0	8304.8	4.0	1.071E+03	0.4	6.2	8	
2	295	29500.0	63500.0	8304.8	7.0	1.545E+03	0.6	8.9	8	
3	280	28000.0	91500.0	8305.8	11.0	2.047E+03	0.8	11.8	8	

BRANCH 17

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area	Cumulated Tributary Area	Area per day	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	320	32000.0	32000.0	8304.8	3.0	(	0.4	5.1	(III)	
2	525	52500.0	84500.0	8304.8	10.0		0.8	11.2	8	
3	590	59000.0	143500.0	8305.8	17.0		1.1	15.4	10	
4	600	60000.0	203500.0	8306.8	24.0		1.3	18.8		
5	610	61000.0	264500.0	8307.8	31.0	3.756E+03	1.5	21.7	10	
6	650	65000.0	329500.0	8308.8	39.0	4.274E+03	1.7	24.7	12	
7	350	35000.0	364500.0	8309.8	43.0	4.513E+03	1.8	26.1	12	
8	-		531000.0	8310.8	63.0	5.571E+03	2.3	32.2	12	inflow from branch #17a
9	420	42000.0	573000.0	8311.8	68.0	5.808E+03	2.4	33.6	12	
10	435	43500.0	616500.0	8312.8	74.0	6.082E+03	2.5	35.2	12	
11	-		689000.0	8313.8	82.0	6.431E+03	2.6	37.2	12	inflow from branch #17b
12	105	10500.0	699500.0	8314.8	84.0	6.516E+03	2.7	37.7	12	

BRANCH 17a

Segment	Plan Length of Tertiary Pipng (ft)		Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	185	18500.0	18500.0	8304.8	2.0	6.564E+02	0.3	3.8	8	
2	350	35000.0	53500.0	8304.8	6.0	1.400E+03	0.6	8.1	8	
3	235	23500.0	77000.0	8305.8	9.0	1.809E+03	0.7	10.5	8	
4	470	47000.0	124000.0	8306.8	14.0	2.368E+03	1.0	13.7	10	
5	340	34000.0	158000.0	8307.8	19.0	2.836E+03	1.2	16.4	10	
6	85	8500.0	166500.0	8308.8	20.0	2.922E+03	1.2	16.9	10	

BRANCH 17b

	Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
ı		(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
ſ	1	565	56500.0	56500.0	8304.8	6.0	1.400E+03	0.6	8.1	8	
ſ	2	160	16000.0	72500.0	8304.8	8.0	1.681E+03	0.7	9.7	8	

BRANCH 18

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
		(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	340	34000.0	34000.0	8304.8	4.0		0.4	6.2	8	
2	400	40000.0	74000.0	8304.8	8.0	1.681E+03	0.7	9.7	8	
3	400	40000.0	114000.0	8305.8	13.0	2.265E+03	0.9	13.1	8	
4	400	40000.0	154000.0	8306.8	18.0	2.747E+03	1.1	15.9	10	
5	-		1196000.0	8307.8	143.0	8.654E+03	3.5	50.0	15	inflow from branches #17 & 18a
6	-		1196000.0	8308.8	143.0	8.655E+03	3.5	50.0	15	
7	350	35000.0	1231000.0	8309.8	148.0	8.815E+03	3.6	51.0	15	
6	450	45000.0	1276000.0	8310.8	153.0	8.973E+03	3.7	51.9	15	
7	485	48500.0	1324500.0	8311.8	159.0	9.159E+03	3.7	52.9	15	
8	450	45000.0	1369500.0	8312.8	164.0	9.311E+03	3.8	53.8	15	
9	575	57500.0	1427000.0	8313.8	171.0	9.520E+03	3.9	55.0	15	
10	170	17000.0	1444000.0	8314.8	173.0	9.580E+03	3.9	55.4	15	
11	-		3004500.0	8315.8	361.0	1.408E+04	5.8	81.4	18	inflow from branches #16 & 19

BRANCH 18a

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	510	51000.0	51000.0	8304.8	6.0	1.400E+03	0.6	8.1	8	
2	505	50500.0	101500.0	8304.8	12.0	2.158E+03	0.9	12.5	8	
3	660	66000.0	167500.0	8305.8	20.0	2.921E+03	1.2	16.9	10	
4	700	70000.0	237500.0	8306.8	28.0	3.545E+03	1.4	20.5	10	
5	700	70000.0	307500.0	8307.8	37.0	4.149E+03	1.7	24.0	12	
6	350	35000.0	342500.0	8308.8	41.0	4.395E+03	1.8	25.4	12	

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area	Cumulated Tributary Area	Area per day	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	442	44200.0	44200.0	8304.8	5.0	(	( /	7.2	(111)	
2	520	52000.0	96200.0	8304.8		2.047E+03			8	
3	650	65000.0	161200.0	8305.8	19.0			16.4	10	
4	660	66000.0	227200.0	8306.8	27.0	3.472E+03	1.4	20.1	10	
5	700	70000.0	297200.0	8307.8	35.0	4.022E+03	1.6	23.2	10	
6	700	70000.0	367200.0	8308.8	44.0	4.571E+03	1.9	26.4	12	
7	700	70000.0	437200.0	8309.8	52.0	5.014E+03	2.0	29.0	12	
8	700	70000.0	507200.0	8310.8	61.0	5.473E+03	2.2	31.6	12	
9	170	17000.0	524200.0	8311.8	63.0	5.571E+03	2.3	32.2	12	
10	-		730900.0	8312.8	87.0	6.639E+03	2.7	38.4	12	inflow from branch #19a

$\mathbf{p}$	ANI	CU	10a

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	510	51000.0	51000.0	8304.8	6.0	1.400E+03	0.6	8.1	8	
2	612	61200.0	112200.0	8304.8	13.0	2.264E+03	0.9	13.1	8	
3	435	43500.0	155700.0	8305.8	18.0	2.747E+03	1.1	15.9	10	
4	360	36000.0	191700.0	8306.8	23.0	3.167E+03	1.3	18.3	10	
5	150	15000.0	206700.0	8307.8	24.0	3.246E+03	1.3	18.8	10	

## BRANCH 20

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft ² )	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	265	26500.0	26500.0	8304.8	3.0	8.784E+02	0.4	5.1	8	
2	590	59000.0	85500.0	8304.8	10.0	1.931E+03	0.8	11.2	8	
3	490	49000.0	134500.0	8305.8	16.0	2.563E+03	1.0	14.8	10	
4	700	70000.0	204500.0	8306.8	24.0	3.246E+03	1.3	18.8	10	
5	-		417000.0	8307.8	50.0	4.905E+03	2.0	28.4	12	inflow from branch #20a

## BRANCH 20a

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)		Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	290	29000.0	29000.0	8304.8	3.0	8.784E+02	0.4	5.1	8	
2	650	65000.0	94000.0	8304.8	11.0	2.047E+03	0.8	11.8	8	
3	885	88500.0	182500.0	8305.8	21.0	3.005E+03	1.2	17.4	10	
4	300	30000.0	212500.0	8306.8	25.0	3.323E+03	1.4	19.2	10	

BRANCH 21

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	300	30000.0	30000.0	8304.8	3.0	8.784E+02	0.4	5.1	8	
2	620	62000.0	92000.0	8304.8	11.0	2.047E+03	0.8	11.8	8	
3	700	70000.0	162000.0	8305.8	19.0	2.835E+03	1.2	16.4	10	
4	700	70000.0	232000.0	8306.8	27.0	3.472E+03	1.4	20.1	10	
5	-		354000.0	8307.8	42.0	4.454E+03	1.8	25.7	12	inflow from branch #21a
6	-		533000.0	8308.8	64.0	5.618E+03	2.3	32.5	12	inflow from branch #21b
7	-		533000.0	8309.8	64.0	5.618E+03	2.3	32.5	12	
8	700	70000.0	603000.0	8310.8	72.0	5.991E+03	2.4	34.6	12	
9	420	42000.0	645000.0	8311.8	77.0	6.214E+03	2.5	35.9	12	
10	700	70000.0	715000.0	8312.8	86.0	6.597E+03	2.7	38.1	12	
11	-		885500.0	8313.8	106.0	7.383E+03	3.0	42.7	15	inflow from branch #21c
12	555	55500.0	941000.0	8314.8	113.0	7.641E+03	3.1	44.2	15	
13	650	65000.0	1006000.0	8315.8	120.0	7.891E+03	3.2	45.6	15	
14	390	39000.0	1045000.0	8316.8	125.0	8.066E+03	3.3	46.6	15	
15	320	32000.0	1077000.0	8317.8	129.0	8.203E+03	3.4	47.4	15	
16	110	11000.0	1088000.0	8318.8	130.0	8.238E+03	3.4	47.6	15	
17	-		2003500.0	8319.8	240.0	1.139E+04	4.7	65.8	15	inflow from branches # 20 & 22

## BRANCH 21a

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	310	31000.0	31000.0	8304.8	3.0	8.784E+02	0.4	5.1	8	
2	560	56000.0	87000.0	8304.8	10.0	1.931E+03	0.8	11.2	8	
3	350	35000.0	122000.0	8305.8	14.0	2.367E+03	1.0	13.7	10	

BRANCH 21b

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	385	38500.0	38500.0	8304.8	4.0	1.071E+03	0.4	6.2	8	
2	605	60500.0	99000.0	8304.8	11.0	2.047E+03	0.8	11.8	8	
3	490	49000.0	148000.0	8305.8	17.0	2.656E+03	1.1	15.4	10	
4	310	31000.0	179000.0	8306.8	21.0	3.005E+03	1.2	17.4	10	

## BRANCH 21c

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	85	8500.0	8500.0	8304.8	1.0	3.845E+02	0.2	2.2	8	
2	300	30000.0	38500.0	8304.8	4.0	1.071E+03	0.4	6.2	8	
3	270	27000.0	65500.0	8305.8	7.0	1.545E+03	0.6	8.9	8	
4	315	31500.0	97000.0	8306.8	11.0	2.047E+03	0.8	11.8	8	
5	490	49000.0	146000.0	8307.8	17.0	2.657E+03	1.1	15.4	10	
6	245	24500.0	170500.0	8308.8	20.0	2.922E+03	1.2	16.9	10	

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area	Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
		(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	290	29000.0	29000.0	8304.8	3.0	8.784E+02	0.4	5.1	8	
2	600	60000.0	89000.0	8304.8	10.0	1.931E+03	0.8	11.2	8	
3	655	65500.0	154500.0	8305.8	18.0	2.747E+03	1.1	15.9	10	
4	680	68000.0	222500.0	8306.8	26.0	3.398E+03	1.4	19.6	10	
5	700	70000.0	292500.0	8307.8	35.0	4.022E+03	1.6	23.2	10	
6	700	70000.0	362500.0	8308.8	43.0	4.513E+03	1.8	26.1	12	
7	700	70000.0	432500.0	8309.8	52.0	5.014E+03	2.0	29.0	12	
8	660	66000.0	498500.0	8310.8	59.0	5.375E+03	2.2	31.1	12	

## Attachment 7-2: Lean Ore Surge Pile, year 1

Column height	H _T	3.05 m
Hydrulic cond.	k	8.64E-03 m/day
Water density	$\gamma_{w}$	9.81 kN/m^3
Soil density	$\gamma_{s}$	19.98 kN/m^3
Load on surface	р	235.6 kN/m^2
Consolidation coef.	cv	0.058 m^2/day
	t	1 day

Flux Rate
m/day
For z= 0.0
Case 3
Single drain
H=H _T
3.0

#### BRANCH 1

BRANCH 1										
Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulate d Tributary	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	106	10600.0	10600.0	8304.8	1.0	3.845E+02	0.2	2.2	6	
2	120	12000.0	22600.0	8304.8	2.0	7.691E+02	0.3	4.4	6	
3	159	15900.0	38500.0	8305.8	4.0	1.538E+03	0.6	8.9	8	
4	256	25600.0	64100.0	8306.8	7.0	2.692E+03	1.1	15.6	10	
5	137	13700.0	77800.0	8307.8	9.0	3.462E+03	1.4	20.0	10	
6	256	25600.0	103400.0	8308.8	12.0	4.617E+03	1.9	26.7	12	
7	138	13800.0	117200.0	8309.8	14.0	5.387E+03	2.2	31.1	12	
8	256	25600.0	142800.0	8310.8	17.0	6.542E+03	2.7	37.8	12	
9	137	13700.0	156500.0	8311.8	18.0	6.927E+03	2.8	40.0	15	
10	256	25600.0	182100.0	8312.8	21.0	8.083E+03	3.3	46.7	15	
11	256	25600.0	207700.0	8313.8	24.0	9.239E+03	3.8	53.4	15	
12	96	9600.0	217300.0	8314.8	26.0	1.001E+04	4.1	57.9	15	
13	116	11600.0	228900.0	8315.8	27.0	1.040E+04	4.2	60.1	15	
14	284	28400.0	257300.0	8316.8	30.0	1.155E+04	4.7	66.8	15	
15	133	13300.0	270600.0	8317.8	32.0	1.232E+04	5.0	71.2	18	
16	101	10100.0	280700.0	8318.8	33.0	1.271E+04	5.2	73.5	18	
17			355100.0	8319.8	42.0	1.618E+04	6.6	93.5	18	Inflow from branch 1a
18	121	12100.0	367200.0	8320.8	44.0	1.695E+04	6.9	98.0	18	
19	92	9200.0	376400.0	8321.8	45.0	1.734E+04	7.1	100.2	18	
20	125	12500.0	388900.0	8322.8	46.0	1.773E+04	7.2	102.5	18	
21	125	12500.0	401400.0	8323.8	48.0	1.850E+04	7.6	106.9	18	
22	129	12900.0	414300.0	8324.8	49.0	1.889E+04	7.7	109.2	18	
23	257	25734.0	440034.0	8325.8	52.0	2.005E+04	8.2	115.9	21	Actual length 123 ft
24	124	12400.0	452434.0	8326.8	54.0	2.082E+04	8.5	120.3	21	-
25	276	27643.0	480077.0	8327.8	57.0	2.198E+04	9.0	127.0	21	Actual length 126 ft
26	122	12200.0	492277.0	8328.8	59.0	2.275E+04	9.3	131.5	21	-
27	126	12600.0	504877.0	8329.8	60.0	2.314E+04	9.5	133.8	21	
28	127	12700.0	517577.0	8330.8	62.0	2.392E+04	9.8	138.2	21	
29	111	11100.0	528677.0	8331.8	63.0	2.430E+04	9.9	140.5	21	
30	130	13000.0	541677.0	8332.8	65.0	2.508E+04	10.3	145.0	21	
31	44	4400.0	546077.0	8333.8	65.0	2.508E+04	10.3	145.0	21	
32	86	8600.0	554677.0	8334.8	66.0	2.547E+04	10.4	147.2	21	
33	32	3200.0	557877.0	8335.8	66.0	2.547E+04	10.4	147.2	21	
34			1156618.0	8336.8	138.0	5.327E+04	21.8	307.9	27	Inflow from branch #5
35	89	8900.0	1165518.0	8337.8	139.0	5.366E+04	21.9	310.2	27	

## BRANCH 1a

DIGITICIT 18										
Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area	Cumulate d (ft ² )	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
			· /						(111)	
1	98	9800.0	9800.0	8304.8	1.0	3.845E+02	0.2	2.2	6	
2	185	18500.0	28300.0	8304.8	3.0	1.154E+03	0.5	6.7	8	
3	181	18100.0	46400.0	8305.8	5.0	1.923E+03	0.8	11.1	8	
4	280	28000.0	74400.0	8306.8	8.0	3.077E+03	1.3	17.8	10	

BRANCH 2

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulate d Tributary	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	120	12000.0	12000.0	8304.8	1.0	3.845E+02	0.2	2.2	6	
2	173	17300.0	29300.0	8304.8	3.0	8.784E+02	0.4	5.1	6	
3	146	14600.0	43900.0	8305.8	5.0	1.243E+03	0.5	7.2	8	
4	256	25600.0	69500.0	8306.8	8.0	1.681E+03	0.7	9.7	8	
5	120	12000.0	81500.0	8307.8	9.0	1.810E+03	0.7	10.5	8	
6	256	25600.0	107100.0	8308.8	12.0	2.159E+03	0.9	12.5	8	
7	256	25600.0	132700.0	8309.8	15.0	2.468E+03	1.0	14.3	10	
8	161	16100.0	148800.0	8310.8	17.0	2.658E+03	1.1	15.4	10	
9	256	25600.0	174400.0	8311.8	20.0	2.923E+03	1.2	16.9	10	
10	149	14900.0	189300.0	8312.8	22.0	3.089E+03	1.3	17.9	10	
11	256	25600.0	214900.0	8313.8	25.0	3.325E+03	1.4	19.2	10	
12	166	16600.0	231500.0	8314.8	27.0	3.474E+03	1.4	20.1	10	
13	256	25600.0	257100.0	8315.8	30.0	3.687E+03	1.5	21.3	10	
14	177	17700.0	274800.0	8316.8	33.0	3.889E+03	1.6	22.5	10	
15	256	25600.0	300400.0	8317.8	36.0	4.081E+03	1.7	23.6	10	
16	182	18200.0	318600.0	8318.8	38.0	4.204E+03	1.7	24.3	12	
17	256	25600.0	344200.0	8319.8	41.0	4.380E+03	1.8	25.3	12	
18	190	19000.0	363200.0	8320.8	43.0	4.494E+03	1.8	26.0	12	
19	251	25100.0	388300.0	8321.8	46.0	4.657E+03	1.9	26.9	12	
20	256	25600.0	413900.0	8322.8	49.0	4.812E+03	2.0	27.8	12	
21	178	17800.0	431700.0	8323.8	51.0	4.912E+03	2.0	28.4	12	
22	171	17100.0	448800.0	8324.8	53.0	5.009E+03	2.0	29.0	12	
23	140	14000.0	462800.0	8325.8	55.0	5.103E+03	2.1	29.5	12	
24	254	25400.0	488200.0	8326.8	58.0	5.239E+03	2.1	30.3	12	
25	185	18500.0	506700.0	8327.8	60.0	5.326E+03	2.2	30.8	12	
26	205	20500.0	527200.0	8328.8	63.0	5.451E+03	2.2	31.5	12	
27	270	27000.0	554200.0	8329.8	66.0	5.571E+03	2.3	32.2	12	
28	110	11000.0	565200.0	8330.8	67.0	5.610E+03	2.3	32.4	12	
29	317	31700.0	596900.0	8331.8	71.0	5.759E+03	2.4	33.3	12	
30	306	30600.0	627500.0	8332.8	75.0	5.899E+03	2.4	34.1	12	
31			1061776.0	8333.8	127.0	7.108E+03	2.9	41.1	15	Inflow from branch #3
32			1136489.0	8334.8	136.0	7.236E+03	3.0	41.8	15	Inflow from branch #2a

BRANCH 2a

DKANCII 2a										
Segment	Plan Length of Tertiary Pipng	Tributary Area			Т		Cumulative Flow			Notes
			Area	Area per day		Flow		k	Dia.	
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	399	39913.0	39913.0	8304.8	4.0	1.071E+03	0.4	6.2	8	Actual length 240 ft
2	348	34800.0	74713.0	8304.8	8.0	1.681E+03	0.7	9.7	8	

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulate d Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	284	28358.0	28358.0	8304.8	3.0	8.784E+02	0.4	5.1	6	Actual length 210 ft
2	142	14200.0	42558.0	8304.8	5.0	1.243E+03	0.5	7.2	8	
3	275	27500.0	70058.0	8305.8	8.0	1.681E+03	0.7	9.7	8	
4	194	19400.0	89458.0	8306.8	10.0	1.931E+03	0.8	11.2	8	
5	207	20700.0	110158.0	8307.8	13.0	2.265E+03	0.9	13.1	8	
6	337	33700.0	143858.0	8308.8	17.0	2.657E+03	1.1	15.4	10	
7	192	19200.0	163058.0	8309.8	19.0	2.836E+03	1.2	16.4	10	
8	343	34300.0	197358.0	8310.8	23.0	3.168E+03	1.3	18.3	10	
9	193	19300.0	216658.0	8311.8	26.0	3.399E+03	1.4	19.6	10	
10	180	18000.0	234658.0	8312.8	28.0	3.545E+03	1.4	20.5	10	
11	185	18500.0	253158.0	8313.8	30.0	3.686E+03	1.5	21.3	10	
12	342	34200.0	287358.0	8314.8	34.0	3.953E+03	1.6	22.9	10	
13	191	19100.0	306458.0	8315.8	36.0	4.080E+03	1.7	23.6	10	
14	169	16900.0	323358.0	8316.8	38.0	4.203E+03	1.7	24.3	12	
15	363	36300.0	359658.0	8317.8	43.0	4.492E+03	1.8	26.0	12	
16	164	16400.0	376058.0	8318.8	45.0	4.602E+03	1.9	26.6	12	
17	461	46118.0	422176.0	8319.8	50.0	4.861E+03	2.0	28.1	12	Actual length 349 ft
19	121	12100.0	434276.0	8320.8	52.0	4.959E+03	2.0	28.7	12	

#### BRANCH 4

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area	Cumulate d Tributary Area (ft ² )	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow	k	Dia. (in)	Notes
1	157	15700.0	15700.0	8304.8	1.0	3.845E+02	0.2	2.2	6	
2	198	19800.0	35500.0	8304.8	4.0	1.071E+03	0.4	6.2	8	
3	192	19200.0	54700.0	8305.8	6.0	1.400E+03	0.6	8.1	8	
4	245	24500.0	79200.0	8306.8	9.0	1.810E+03	0.7	10.5	8	
5	319	31900.0	111100.0	8307.8	13.0	2.265E+03	0.9	13.1	8	
6	264	26400.0	137500.0	8308.8	16.0	2.564E+03	1.0	14.8	10	
7		0.0	236600.0	8309.8	28.0	3.544E+03	1.4	20.5	10	Inflow from branch #4a

#### BRANCH 4a

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulate d Tributary Area		Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	349	34900.0	34900.0	8304.8	4.0	1.071E+03	0.4	6.2	8	
2	293	29300.0	64200.0	8304.8	7.0	1.545E+03	0.6	8.9	8	
3	349	34900.0	99100.0	8305.8	11.0	2.047E+03	0.8	11.8	8	

## BRANCH 5

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulate d Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	452	45154.0	45154.0	8304.8	5.0	1.243E+03	0.5	7.2	8	Actual length 175 ft
2	159	15900.0	61054.0	8304.8	7.0	1.545E+03	0.6	8.9	8	
3	358	35808.0	96862.0	8305.8	11.0	2.047E+03	0.8	11.8	8	Actual length 148 ft
4	160	16000.0	112862.0	8306.8	13.0	2.265E+03	0.9	13.1	8	
5	332	33225.0	146087.0	8307.8	17.0	2.657E+03	1.1	15.4	10	Actual length 131 ft
6	155	15500.0	161587.0	8308.8	19.0	2.836E+03	1.2	16.4	10	
7	276	27555.0	189142.0	8309.8	22.0	3.088E+03	1.3	17.8	10	Actual length 134 ft
8	154	15400.0	204542.0	8310.8	24.0	3.247E+03	1.3	18.8	10	
9	252	25150.0	229692.0	8311.8	27.0	3.473E+03	1.4	20.1	10	Actual length 135 ft
10	160	16000.0	245692.0	8312.8	29.0	3.616E+03	1.5	20.9	10	
11	216	21577.0	267269.0	8313.8	32.0	3.822E+03	1.6	22.1	10	Actual length 127 ft
12	157	15700.0	282969.0	8314.8	34.0	3.953E+03	1.6	22.9	10	
13	176	17605.0	300574.0	8315.8	36.0	4.080E+03	1.7	23.6	10	Actual length 132 ft
14	184	18400.0	318974.0	8316.8	38.0	4.203E+03	1.7	24.3	12	
15		0.0	418074.0	8317.8	50.0	4.859E+03	2.0	28.1	12	Inflow from branch #4
16	572	57160.0	475234.0	8318.8	57.0	5.189E+03	2.1	30.0	12	Actual length 146 ft
17	157	15700.0	490934.0	8319.8	59.0	5.278E+03	2.2	30.5	12	
18	573	57298.0	548232.0	8320.8	65.0	5.526E+03	2.3	31.9	12	Actual length 190 ft
19	153	15300.0	563532.0	8321.8	67.0	5.604E+03	2.3	32.4	12	
20	214	21409.0	584941.0	8322.8	70.0	5.716E+03	2.3	33.0	12	Actual length 185 ft
21	138	13800.0	598741.0	8323.8	71.0	5.753E+03	2.4	33.3	12	

478 - Indicates areas where secondary piping acts as tertiary piping.
 512 - Relevant areas converted to equivalent tertiary piping length for ease of table calculations.
 125 - Indicates areas where secondary piping acts as tertiary piping, and where equivalent lengths are used.

## Attachment 7-3: Category 4 Stockpile, year 1

 Column height
 H_T
 8.53 m

 Hydrulic cond.
 k
 8.64E-03 m/day

 Water density
 γ_w
 9.81 kN/m^3

 Soil density
 γ_s
 19.98 kN/m^3

 Load on surface
 p
 235.6 kN/m^2

 Consolidation coef.
 cv
 0.058 m²2/day

 t
 1 day

Flux Rate
m/day
For z= 0.0
Case 3
Single drain
H=H _T
8.5

#### BRANCH 1

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area	Cumulated Tributary Area (ft²)	Area per day	T	Flow	Cumulative Flow	k	Dia.	Notes
-	383	38300.0	38300.0	(ft2/day) 8304.8	(days)	(m3/day) 1.538E+03	(ft3/s) 0.6	8.9	(in)	
2	410	41000.0	79300.0	8304.8		3.461E+03	1.4	20.0	10	
3	491	49100.0	128400.0	8304.8		5.768E+03	2.4	33.3	12	
4	512	51200.0	179600.0	8304.8		8.075E+03	3.3	46.7	15	
5	512	51200.0	230800.0	8304.8		1.038E+04	4.2	60.0	15	
6	512	51200.0	282000.0	8304.8	33.0	1.269E+04	5.2	73.3	18	
7	512	51200.0	333200.0	8304.8	40.0	1.538E+04	6.3	88.9	18	
8	250	25000.0	358200.0	8304.8	43.0	1.653E+04	6.8	95.6	18	
9	-		436200.0	8304.8	52.0	2.000E+04	8.2	115.6	21	inflow from branch #2
10	512	51200.0	487400.0	8304.8	58.0	2.230E+04	9.1	128.9	21	
11	512	51200.0	538600.0	8304.8	64.0	2.461E+04	10.1	142.3	21	
12	512	51200.0	589800.0	8304.8	71.0	2.730E+04	11.2	157.8	21	
13	410	41000.0	630800.0	8304.8	75.0	2.884E+04	11.8	166.7	21	
14	420	42000.0	672800.0	8304.8	81.0	3.115E+04	12.7	180.0	24	
15	380	38000.0	710800.0	8304.8	85.0	3.268E+04	13.4	188.9	24	
16	484	48400.0	759200.0	8304.8	91.0	3.499E+04	14.3	202.3	24	
17	484	48400.0	807600.0	8304.8	97.0	3.730E+04	15.2	215.6	24	
18	512	51200.0	858800.0	8304.8		3.961E+04		228.9	24	
19	512	51200.0	910000.0	8304.8	109.0	4.191E+04	17.1	242.3	24	
20	-	,	1239100.0	8304.8	149.0	5.729E+04	23.4	331.2	27	inflow from branch #3

## BRANCH 2

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	680	68000.0	68000.0	8304.8	8.0	3.076E+03	1.3	17.8	10	
2	100	10000.0	78000.0	8304.8	9.0	3.461E+03	1.4	20.0	10	

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	580	58000.0	58000.0	8304.8	6.0	2.307E+03	0.9	13.3	10	
2	316	31600.0	89600.0	8304.8	10.0	3.845E+03	1.6	22.2	10	
3	580	58000.0	147600.0	8305.8	17.0	6.538E+03	2.7	37.8	12	
4	570	57000.0	204600.0	8306.8	24.0	9.231E+03	3.8	53.4	15	
5	520	52000.0	256600.0	8307.8	30.0	1.154E+04	4.7	66.7	15	
6	350	35000.0	291600.0	8308.8	35.0	1.346E+04	5.5	77.8	18	
7	300	30000.0	321600.0	8309.8	38.0	1.462E+04	6.0	84.5	18	
8	75	7500.0	329100.0	8310.8	39.0	1.501E+04	6.1	86.7	18	

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	105	10500.0	10500.0	8304.8	1.0	3.845E+02	0.2	2.2	6	
2	225	22500.0	33000.0	8304.8	3.0	8.784E+02	0.4	5.1	6	
3	250	25000.0	58000.0	8304.8	6.0	1.400E+03	0.6	8.1	8	
4	255	25500.0	83500.0	8304.8	10.0	1.931E+03	0.8	11.2	8	
5	290	29000.0	112500.0	8304.8	13.0	2.264E+03	0.9	13.1	8	
6	350	35000.0	147500.0	8304.8	17.0	2.656E+03	1.1	15.4	10	
7	345	34500.0	182000.0	8304.8	21.0		1.2	17.4	10	
8	375	37500.0	219500.0	8304.8	26.0			19.6		
9	-		219500.0	8304.8	26.0			19.6	10	
10	590	59000.0	278500.0	8304.8	33.0		1.6	22.5	10	
11	675	67500.0	346000.0	8304.8	41.0		1.8	25.4	12	
12	690	69000.0	415000.0	8304.8	49.0			28.0	12	
13	600	60000.0	475000.0	8304.8	57.0	5.270E+03	2.2	30.5	12	
14	350	35000.0	510000.0	8304.8	61.0	5.470E+03	2.2	31.6	12	
15	610	61000.0	571000.0	8304.8	68.0	5.804E+03	2.4	33.5	12	
16	450	45000.0	616000.0	8304.8	74.0	6.076E+03	2.5	35.1	12	
17	435	43500.0	659500.0	8304.8	79.0	6.296E+03	2.6	36.4	12	
18	440	44000.0	703500.0	8304.8	84.0	6.508E+03		37.6		
19	350	35000.0	738500.0	8304.8	88.0	6.673E+03	2.7	38.6	12	
20	-		1977600.0	8304.8	238.0	1.131E+04	4.6	65.4	15	inflow from branch #1

⁻ indicates value includes estimate of areas where secondary piping acts as tertiary piping.

- Relevant areas converted to equivalent tertiary piping length for ease of table

## Attachment 7-4: Category 3 Lean Ore Stockpile, year 1

 Column height
 H₁
 6.71 m

 Hydrulic cond.
 k
 8.64E-03 m/day

 Water density

 √w
 9.81 kN/m^3

 Soil density

 √s
 19.98 kN/m^3

 Load on surface
 p
 235.6 kN/m^2

 Consolidation coef.
 cv
 0.058 m^2/day

 t
 1 day

Flux Rate
m/day
For z= 0.0
Case 3
Single drain
H=H _T
6.7

#### BRANCH 1

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	556	55600.0	55600.0	8304.8	6.0	2.307E+03	0.9	13.3	10	
2	512	51200.0	106800.0	8304.8		4.614E+03		26.7	12	
3	477	47700.0	154500.0	8305.8	18.0	6.922E+03	2.8	40.0	15	
4	429	42900.0	197400.0	8306.8	23.0	8.846E+03	3.6	51.1	15	
5	380	38000.0	235400.0	8307.8	28.0	1.077E+04	4.4	62.3	15	
6	256	25600.0	261000.0	8308.8	31.0	1.193E+04	4.9	68.9	15	
7	365	36500.0	297500.0	8309.8	35.0	1.347E+04	5.5	77.8	18	
8	366	36600.0	334100.0	8310.8	40.0	1.539E+04	6.3	89.0	18	
9	519	51900.0	386000.0	8311.8	46.0	1.770E+04	7.2	102.3	18	
10	241	24100.0	410100.0	8312.8	49.0	1.886E+04	7.7	109.0	18	
11	340	34000.0	444100.0	8313.8	53.0	2.040E+04	8.3	117.9	21	
12	654	65400.0	509500.0	8314.8	61.0	2.348E+04	9.6	135.7	21	
13	455	45500.0	555000.0	8315.8	66.0	2.541E+04	10.4	146.9	21	

#### BRANCH 2

Segment	Plan Length of Tertiary Pipng		Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	355	35500.0	35500.0	8304.8	4.0	1.538E+03	0.6	8.9	8	
2	256	25600.0	61100.0	8304.8	7.0	2.692E+03	1.1	15.6	10	
3	512	51200.0	112300.0	8305.8	13.0	4.999E+03	2.0	28.9	12	
4	512	51200.0	163500.0	8306.8	19.0	7.308E+03	3.0	42.2	15	
5	463	46300.0	209800.0	8307.8	25.0	9.617E+03	3.9	55.6	15	
6	399	39900.0	249700.0	8308.8	30.0	1.154E+04	4.7	66.7	15	
7	328	32800.0	282500.0	8309.8	33.0	1.270E+04	5.2	73.4	18	
8	618	61800.0	344300.0	8310.8	41.0	1.578E+04	6.4	91.2	18	
9	551	55100.0	399400.0	8311.8	48.0	1.847E+04	7.6	106.8	18	

Segment	Plan Length of Tertiary Pipng	Tributary Area	Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	417	41700.0	41700.0	8304.8	5.0	1.923E+03	0.8	11.1	8	
2	512	51200.0	92900.0	8304.8	11.0	4.230E+03	1.7	24.4	12	
3	512	51200.0	144100.0	8305.8	17.0	6.538E+03	2.7	37.8	12	
4	512	51200.0	195300.0	8306.8	23.0	8.846E+03	3.6	51.1	15	
5	512	51200.0	246500.0	8307.8	29.0	1.116E+04	4.6	64.5	15	
6	477	47700.0	294200.0	8308.8	35.0	1.346E+04	5.5	77.8	18	
7	410	41000.0	335200.0	8309.8	40.0	1.539E+04	6.3	89.0	18	
8	383	38300.0	373500.0	8310.8	44.0	1.693E+04	6.9	97.9	18	
9	256	25600.0	399100.0	8311.8	48.0	1.847E+04	7.6	106.8	18	
10	196	19600.0	418700.0	8312.8	50.0	1.924E+04	7.9	111.2	18	
11	154	15400.0	434100.0	8313.8	52.0	2.002E+04	8.2	115.7	21	
12	99	9900.0	444000.0	8314.8	53.0	2.040E+04	8.3	117.9	21	
13		1229300.0	1673300.0	8315.8	201.0	7.739E+04	31.6	447.4	33	inflow from branch #4
14		1628700.0	3302000.0	8316.8	397.0	1.529E+05	62.5	883.7	42	inflow from branch #2
15	430	43000.0	3345000.0	8317.8	402.0	1.548E+05	63.3	894.9	42	
16	200	20000.0	3365000.0	8318.8	404.0	1.556E+05	63.6	899.5	42	
17		575000.0	3940000.0	8319.8	473.0	1.822E+05	74.5	1053.2	42	inflow from branch #1

#### BRANCH 4

BRANCH 4		II.								
Segment	Plan Length of Tertiary Pipng	Tributary Area	Area	Area per day	T	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	356	35600.0	35600.0	8304.8	4.0	1.071E+03	0.4	6.2	8	
2	512	51200.0	86800.0	8304.8	10.0	1.931E+03	0.8	11.2	8	
3	512	51200.0	138000.0	8305.8	16.0	2.563E+03	1.0	14.8	10	
4	512	51200.0	189200.0	8306.8	22.0	3.087E+03	1.3	17.8	10	
5	512	51200.0	240400.0	8307.8	28.0	3.545E+03	1.4	20.5	10	
6	512	51200.0	291600.0	8308.8	35.0	4.023E+03	1.6	23.3	10	
7	512	51200.0	342800.0	8309.8	41.0	4.395E+03	1.8	25.4	12	
8	512	51200.0	394000.0	8310.8	47.0	4.742E+03	1.9	27.4	12	
9	424	42400.0	436400.0	8311.8	52.0	5.015E+03	2.0	29.0	12	
10	512	51200.0	487600.0	8312.8	58.0	5.326E+03	2.2	30.8	12	
11		731800.0	1219400.0	8313.8	146.0	8.749E+03	3.6	50.6	15	includes inflow from branch # 5

#### BRANCH 5

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	462	46200.0	46200.0	8304.8	5.0	1.243E+03	0.5	7.2	8	
2	512	51200.0	435300.0	8304.8	52.0	5.011E+03	2.0	29.0	12	includes inflow from branch #5a
3	356	35600.0	470900.0	8305.8	56.0	5.220E+03	2.1	30.2	12	
4	256	25600.0	559500.0	8306.8	67.0	5.758E+03	2.4	33.3	12	includes flow from branch #5b
5	369	36900.0	596400.0	8307.8	71.0	5.944E+03	2.4	34.4	12	
6	842	84200.0	680600.0	8308.8	81.0	6.384E+03	2.6	36.9	12	

BRANCH 5a

Segment	Plan Length of Tertiary Pipng (ft)		Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	182	18200.0	18200.0	8304.8	2.0	6.564E+02	0.3	3.8	6	
2	775	77500.0	95700.0	8304.8	11.0	2.047E+03	0.8	11.8	8	
3	352	35200.0	130900.0	8305.8	15.0	2.467E+03	1.0	14.3	10	
4	983	98300.0	229200.0	8306.8	27.0	3.472E+03	1.4	20.1	10	
5	1087	108700.0	337900.0	8307.8	40.0	4.334E+03	1.8	25.1	12	

## BRANCH 5b

	314.1. ( C11 C .										
	Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
		(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
Ī	1	404	40400.0	40400.0	8304.8	4.0	1.071E+03	0.4	6.2	8	
I	2	226	22600.0	63000.0	8304.8	7.0	1.545E+03	0.6	8.9	8	

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area	Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	243	24300.0	24300.0	8304.8	2.0	6.564E+02	0.3	3.8	6	
2	242	24200.0	48500.0	8304.8	5.0	1.243E+03	0.5	7.2	8	
3	241	24100.0	72600.0	8305.8	8.0	1.681E+03	0.7	9.7	8	
4	212	21200.0	93800.0	8306.8	11.0	2.047E+03	0.8	11.8	8	
5	195	19500.0	113300.0	8307.8	13.0	2.265E+03	0.9	13.1	8	
6	800	80000.0	193300.0	8308.8	23.0	3.168E+03	1.3	18.3	10	

#### BRANCH 7

Segment Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area	Cumulated Tributary Area (ft²)	Area per day	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	274	27400.0	27400.0	8304.8		8.784E+02	0.4	5.1	(111)	
2	321	32100.0	59500.0	8304.8		1.545E+03	0.4	8.9	9	
3	326	32600.0	92100.0	8305.8		2.047E+03	0.8	11.8	8	
4	326	32600.0	124700.0	8306.8		2.467E+03	1.0	14.3	10	
5	326	32600.0	157300.0	8307.8		2.747E+03	1.1	15.9	10	
6	326	32600.0	189900.0	8308.8		3.088E+03	1.3	17.8	10	
7	316	31600.0	221500.0	8309.8		3.399E+03	1.4	19.7	10	
8	472	47200.0	268700.0	8310.8		3.826E+03	1.6	22.1	10	
9	512	51200.0	319900.0	8311.8	38.0	4.214E+03	1.7	24.4	12	
10	512	51200.0	371100.0	8312.8	44.0	4.573E+03	1.9	26.4	12	
11	512	51200.0	422300.0	8313.8	50.0	4.909E+03	2.0	28.4	12	
12	512	51200.0	473500.0	8314.8	56.0	5.225E+03	2.1	30.2	12	
13	470	47000.0	520500.0	8315.8	62.0	5.526E+03	2.3	31.9	12	
14	441	44100.0	564600.0	8316.8	67.0	5.765E+03	2.4	33.3	12	
15	384	38400.0	603000.0	8317.8	72.0	5.996E+03	2.5	34.7	12	
16	344	34400.0	637400.0	8318.8	76.0	6.175E+03	2.5	35.7	12	
17	150	15000.0	652400.0	8319.8	78.0	6.264E+03	2.6	36.2	12	
18	130	13000.0	665400.0	8320.8	79.0	6.308E+03	2.6	36.5	12	
19	120	12000.0	677400.0	8321.8	81.0	6.394E+03	2.6	37.0	12	
20	140	14000.0	1820200.0	8322.8	218.0	1.076E+04	4.4	62.2	15	includes inflow from branch # 9
21	229	22900.0	1843100.0	8323.8	221.0	1.084E+04	4.4	62.6	15	
22			2036400.0	8324.8	244.0	1.138E+04	4.7	65.8	15	inflow from Branch #6
23	184	18400.0	2054800.0	8325.8	246.0	1.142E+04	4.7	66.0	15	
24	190	19000.0	2073800.0	8326.8	249.0	1.149E+04	4.7	66.4	15	
25	427	42700.0	2116500.0	8327.8		1.160E+04	4.7	67.1	15	
26	517	51700.0	2168200.0	8328.8	260.0	1.173E+04	4.8	67.8	15	

## BRANCH 8

Segment	Plan Length of Tertiary Pipng (ft)		Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	507	50700.0	50700.0	8304.8	6.0	1.400E+03	0.6	8.1	8	
2	512	51200.0	101900.0	8304.8	12.0	2.158E+03	0.9	12.5	8	
3	512	51200.0	153100.0	8305.8	18.0	2.747E+03	1.1	15.9	10	
4	512	51200.0	204300.0	8306.8	24.0	3.246E+03	1.3	18.8	10	
5	512	51200.0	255500.0	8307.8	30.0	3.687E+03	1.5	21.3	10	
6	182	18200.0	273700.0	8308.8	32.0	3.825E+03	1.6	22.1	10	
7	527	52700.0	326400.0	8309.8	39.0	4.274E+03	1.7	24.7	12	

## BRANCH 9

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	161	16100.0	16100.0	8304.8	1.0	3.845E+02	0.2	2.2	6	
2	607	60700.0	76800.0	8304.8	9.0	1.809E+03	0.7	10.5	8	
3	63	6300.0	83100.0	8305.8	10.0	1.931E+03	0.8	11.2	8	
4	157	15700.0	98800.0	8306.8	11.0	2.047E+03	0.8	11.8	8	
5			935900.0	8307.8	112.0	7.597E+03	3.1	43.9	15	inflows from branches # 8 & 10
6			1043600.0	8308.8	125.0	8.055E+03	3.3	46.6	15	inflow from branch # 9a
7	332	33200.0	1076800.0	8309.8	129.0	8.192E+03	3.3	47.4	15	
8	520	52000.0	1128800.0	8310.8	135.0	8.392E+03	3.4	48.5	15	

## BRANCH 9a

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area	Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	939	93900.0	93900.0	8304.8	11.0	2.047E+03	0.8	11.8	8	
2.	138	13800.0	107700.0	8304 8	12.0	2.158E+03	0.9	12.5	8	

## BRANCH 10

Segment	Plan Length of Tertiary Pipng (ft)		Cumulated Tributary Area (ft²)	Area per day	T	Flow (m3/day)	Cumulative Flow	k	Dia.	Notes
		( )		(	(days)	(	(ft3/s)		(in)	
1	916	91600.0	91600.0	8304.8	11.0	2.047E+03	0.8	11.8	8	
2	133	13300.0	104900.0	8304.8	12.0	2.158E+03	0.9	12.5	8	
3	320	32000.0	136900.0	8305.8	16.0	2.563E+03	1.0	14.8	10	
4			195600.0	8306.8	23.0	3.167E+03	1.3	18.3	10	inflow from branch #10a
5	1169	116900.0	312500.0	8307.8	37.0	4.149E+03	1.7	24.0	12	
6	40	4000.0	316500.0	8308.8	38.0	4.212E+03	1.7	24.3	12	
7	421	42100.0	358600.0	8309.8	43.0	4.513E+03	1.8	26.1	12	
8	372	37200.0	395800.0	8310.8	47.0	4.742E+03	1.9	27.4	12	
9	399	39900.0	435700.0	8311.8	52.0	5.015E+03	2.0	29.0	12	
10	494	49400.0	485100.0	8312.8	58.0	5.326E+03	2.2	30.8	12	
11	256	25600.0	510700.0	8313.8	61.0	5.475E+03	2.2	31.7	12	

#### BRANCH 10a

Segment	Plan Length of Tertiary Pipng (ft)		Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	587	58700.0	58700.0	8304.8	7.0	1.545E+03	0.6	8.9	8	

## BRANCH 11

`	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	828	82800.0	82800.0	8304.8	9.0	1.809E+03	0.7	10.5	8	
2	199	19900.0	102700.0	8304.8	12.0	2.158E+03	0.9	12.5	8	
3	1123	112300.0	215000.0	8305.8	25.0	3.322E+03	1.4	19.2	10	
4	670	67000.0	282000.0	8306.8	33.0	3.891E+03	1.6	22.5	10	
5	256	25600.0	307600.0	8307.8	37.0	4.149E+03	1.7	24.0	12	
6	200	20000.0	327600.0	8308.8	39.0	4.274E+03	1.7	24.7	12	
7	178	17800.0	504600.0	8309.8	60.0	5.424E+03	2.2	31.4	12	includes inflow from branch #11a
8	117	11700.0	516300.0	8310.8	62.0	5.522E+03	2.3	31.9	12	

## BRANCH 11a

Segm	 an Length of ertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	1592	159200.0	159200.0	8304.8	19.0	2.835E+03	1.2	16.4	10	

- 478 indicates value includes estimate of areas where secondary piping acts as tertiary piping.
   Relevant areas converted to equivalent tertiary piping length for ease of table

## Attachment 7-5: Category 2/3 Stockpile, year 1

Flux Rate	
m/day	
For z= 0.0	
Case 3	
Single drain	
H=H _T	
12.2	

#### BRANCH 1

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	758	75800.0	75800.0	8304.8	9.0	3.461E+03	1.4	20.0	10	
2	446	44600.0	120400.0	8304.8	14.0	5.383E+03	2.2	31.1	12	
3	658	65800.0	186200.0	8305.8	22.0	8.461E+03	3.5	48.9	15	
4	461	46100.0	232300.0	8306.8	27.0	1.038E+04	4.2	60.0	15	
5	575	57500.0	289800.0	8307.8	34.0	1.308E+04	5.3	75.6	18	
6	620	62000.0	351800.0	8308.8	42.0	1.616E+04	6.6	93.4	18	
7	150	15000.0	366800.0	8309.8	44.0	1.693E+04	6.9	97.9	18	
8	450	45000.0	411800.0	8310.8	49.0	1.886E+04	7.7	109.0	18	
9	510	51000.0	462800.0	8311.8	55.0	2.117E+04	8.7	122.4	21	
10	550	55000.0	517800.0	8312.8	62.0	2.386E+04	9.8	137.9	21	

#### BRANCH 2

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area  (ft²)	Cumulated Tributary Area (ft²)	Area per day (ft2/day)	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	745	74500.0	74500.0	8304.8	8.0	3.076E+03	1.3	17.8	10	
2	512	51200.0	125700.0	8304.8	15.0	5.768E+03	2.4	33.3	12	
3	758	75800.0	201500.0	8305.8	24.0	9.230E+03	3.8	53.4	15	
4	410	41000.0	242500.0	8306.8	29.0	1.115E+04	4.6	64.5	15	
5	700	70000.0	312500.0	8307.8	37.0	1.423E+04	5.8	82.3	18	

#### BRANCH 3

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	T	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	256	25600.0	25600.0	8304.8	3.0	1.154E+03	0.5	6.7	8	
2	460	46000.0	71600.0	8304.8	8.0	3.076E+03	1.3	17.8	10	
3	385	38500.0	110100.0	8305.8	13.0	4.999E+03	2.0	28.9	12	
4	430	43000.0	153100.0	8306.8	18.0	6.923E+03	2.8	40.0	15	
5	765	76500.0	229600.0	8307.8	27.0	1.039E+04	4.2	60.0	15	
6	280	28000.0	257600.0	8308.8	31.0	1.193E+04	4.9	68.9	15	
7	380	38000.0	295600.0	8309.8	35.0	1.347E+04	5.5	77.8	18	
8	385	38500.0	334100.0	8310.8	40.0	1.539E+04	6.3	89.0	18	
9	-		646600.0	8311.8	77.0	2.963E+04	12.1	171.3	21	inflow from branch #2
10	435	43500.0	690100.0	8312.8	83.0	3.195E+04	13.1	184.7	24	
11	200	20000.0	710100.0	8313.8	85.0	3.272E+04	13.4	189.1	24	
12	-		1248700.0	8314.8	150.0	5.775E+04	23.6	333.8	27	inflow from branch #5
13	-		2827700.0	8315.8	340.0	1.309E+05	53.5	756.7	42	Inflow from branches #1 & 7

#### BRANCH 4

DKANCH										
	Plan Length of Tertiary Pipng		Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	500	50000.0	50000.0	8304.8	6.0	2.307E+03	0.9	13.3	10	
2	456	45600.0	95600.0	8304.8	11.0	4.230E+03	1.7	24.4	12	
3	430	43000.0	138600.0	8305.8	16.0	6.153E+03	2.5	35.6	12	
4	692	69200.0	207800.0	8306.8	25.0	9.615E+03	3.9	55.6	15	
5	176	17600.0	225400.0	8307.8	27.0	1.039E+04	4.2	60.0	15	

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area	Cumulated Tributary Area (ft²)	Area per day	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	326	32600.0	32600.0	8304.8	(		(	6.7	8	
2	607	60700.0	93300.0	8304.8	11.0	4.230E+03		24.4	12	
3	639	63900.0	157200.0	8305.8	18.0	6.922E+03	2.8	40.0	15	
4	605	60500.0	217700.0	8306.8	26.0	1.000E+04	4.1	57.8	15	
5	485	48500.0	266200.0	8307.8	32.0	1.231E+04	5.0	71.2	18	
6	-		491600.0	8308.8	59.0	2.270E+04	9.3	131.2	21	inflow from branch #4
7	470	47000.0	538600.0	8309.8	64.0	2.462E+04	10.1	142.3	21	

BRANCH 6

Segment	Plan Length of Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	256	25600.0	25600.0	8304.8	3.0	8.784E+02	0.4	5.1	6	
2	356	35600.0	61200.0	8304.8	7.0	1.545E+03	0.6	8.9	8	
3	439	43900.0	105100.0	8305.8	12.0	2.158E+03	0.9	12.5	8	
4	472	47200.0	152300.0	8306.8	18.0	2.747E+03	1.1	15.9	10	
5	434	43400.0	195700.0	8307.8	23.0	3.168E+03	1.3	18.3	10	
6	474	47400.0	243100.0	8308.8	29.0	3.617E+03	1.5	20.9	10	
7	470	47000.0	290100.0	8309.8	34.0	3.958E+03	1.6	22.9	10	
8	474	47400.0	337500.0	8310.8	40.0	4.336E+03	1.8	25.1	12	
9	256	25600.0	363100.0	8311.8	43.0	4.515E+03	1.8	26.1	12	

#### BRANCH 7

Segment	Tertiary Pipng	Tributary Area	Cumulated Tributary Area	Area per day	Т	Flow	Cumulative Flow	k	Dia.	Notes
	(ft)	(ft ² )	(ft ² )	(ft2/day)	(days)	(m3/day)	(ft3/s)		(in)	
1	235	23500.0	23500.0	8304.8	2.0	6.564E+02	0.3	3.8	6	
2	369	36900.0	60400.0	8304.8	7.0	1.545E+03	0.6	8.9	8	
3	472	47200.0	107600.0	8305.8	12.0	2.158E+03	0.9	12.5	8	
4	491	49100.0	156700.0	8306.8	18.0	2.747E+03	1.1	15.9	10	
5	491	49100.0	205800.0	8307.8	24.0	3.246E+03	1.3	18.8	10	
6	456	45600.0	251400.0	8308.8	30.0	3.688E+03	1.5	21.3	10	
7	246	24600.0	276000.0	8309.8	33.0	3.892E+03	1.6	22.5	10	
8	681	68100.0	344100.0	8310.8	41.0	4.396E+03	1.8	25.4	12	
9	598	59800.0	403900.0	8311.8	48.0	4.798E+03	2.0	27.7	12	
10	-		767000.0	8312.8	92.0	6.842E+03	2.8	39.5	15	inflow from branch # 6
11	430	43000.0	810000.0	8313.8	97.0	7.040E+03	2.9	40.7	15	
12	410	41000.0	851000.0	8314.8	102.0	7.233E+03	3.0	41.8	15	
13	435	43500.0	894500.0	8315.8	107.0	7.422E+03	3.0	42.9	15	
14	366	36600.0	1061200.0	8316.8	127.0	8.134E+03	3.3	47.0	15	includes inflow from bracnh # 8

#### **BRANCH 8**

Segment	Plan Length of Tertiary Pipng (ft)	Tributary Area	Cumulated Tributary Area (ft²)	Area per day	T (days)	Flow (m3/day)	Cumulative Flow (ft3/s)	k	Dia. (in)	Notes
1	177	17700.0	17700.0	8304.8	2.0	6.564E+02	0.3	3.8	6	
2	499	49900.0	67600.0	8304.8	8.0	1.681E+03	0.7	9.7	8	
3	375	37500.0	105100.0	8305.8	12.0	2.158E+03	0.9	12.5	8	
4	250	25000.0	130100.0	8306.8	15.0	2.467E+03	1.0	14.3	10	

478 - Indicates value includes estimate of areas where secondary piping acts as tertiary piping.

⁻ Relevant areas converted to equivalent tertiary piping length for ease of table calculations.

# Attachment H

**Geotechnical Modeling Work Plan** 

Version 3 5/3/2013

This document is the Work Plan for geotechnical modeling of the NorthMet Project as requested by the Geotechnical Stability Impact Assessment Planning Summary Memo, NorthMet Project EIS, dated May 18, 2011. The findings from the geotechnical modeling will be incorporated into a 3-Volume Geotechnical Data Package – and summarized and referenced as needed. NorthMet Project Geotechnical Data Package Volumes 1 through 3 will consist of:

- Volume 1 Flotation Tailings Basin
- Volume 2 Hydrometallurgical Residue Facility
- Volume 3 Stockpiles

## **Project:**

The project that will be evaluated is the project described in the Co-lead Agency Draft Alternative Summary as amended 03/04/11. This Work Plan will be reviewed and amended as necessary in response to project changes in the event such changes require substantive changes to previously analyzed facility designs.

## **Background:**

The NorthMet Project includes two material disposal facilities that include dams, consisting of the Flotation Tailings Basin for final deposition of flotation tailings, and the Hydrometallurgical Residue Facility for final deposition of the hydrometallurgical residue. The Flotation Tailings Basin and Hydrometallurgical Residue Facility are designed using an iterative process whereby facility capacity requirements and geotechnical requirements are utilized to determine the facility geometry and overall sizing requirements to contain the tailings and residue expected to be generated through the life of the project. A third type of material disposal facility, which does not require dams but does entail foundation and slope construction, is the waste rock stockpiles at the Mine Site (a.k.a. Stockpiles).

An important input parameter to the facility designs are the slope stability Factors of Safety. Applicable slope stability Factors of Safety are selected and then the facilities (Flotation Tailings Basin and Hydrometallurgical Residue Facility) are configured to achieve these Factors of Safety as computed by modeling performed during facility design. In the case of Stockpiles, MDNR-mandated design requirements have been developed that result in acceptable Factors of Safety.

The slope stability analysis methods that are used to compute slope stability Factors of Safety are not required universally. In other words, some types of analysis are appropriate to some facility configurations while not applicable to other configurations. For example, undrained strength stability analysis (USSA) for slope stability is appropriate for the upstream construction approach planned for the Flotation Tailings Basin. It is not necessary for the Hydrometallurgical Residue Facility which will utilize downstream construction with a liner system. Within this context the Geotechnical Modeling Work Plans for the Flotation Tailings Basin, Hydrometallurgical Residue Facility, and Stockpiles are outlined below.

Version 3 5/3/2013

## Flotation Tailings Basin Geotechnical Model for SDEIS, FEIS and Permitting:

The objective of the Flotation Tailings Basin Geotechnical Modeling for the SDEIS, FEIS and Permitting is to demonstrate the ability of the Critical Cross-Section (i.e., Cross-Section F; that cross-section anticipated to yield the lowest slope stability Factors of Safety as indicated in the Preliminary Geotechnical Evaluation – March 2009) to comply with the required global slope stability Factors of Safety. The information content of the November 21, 2012 Geotechnical Data Package – Volume 1 – Version 3, Flotation Tailings Basin (which now supersedes and entirely replaces the Preliminary Geotechnical Evaluation – March 2009) will be updated and formatted to accommodate the Co-lead Agency Comments and to incorporate updated slope stability analysis for scenarios derived from the February 25 and 26, 2013 Geotechnical Workshop (February Workshop) with the Co-lead Agency geotechnical team.. This will be Geotechnical Data Package – Volume 1 – Version 4, Flotation Tailings Basin. The following is a step-by-step summary of the planned Flotation Tailings Basin geotechnical modeling process. Descriptions of previously completed process steps, outcomes of which are reported in Geotechnical Data Package – Volume 1 – Version 3, are preserved below to maintain Work Plan continuity. Work Plan updates derived specifically from the February Workshop are noted as such.

The following paragraphs describe the work that will be included in Geotechnical Data Package – Volume 1 – Version 4, Flotation Tailings Basin which is expected to provide information for the SDEIS.

- 1. Gather existing conditions data (i.e. basin topography, stratigraphy, soil and tailings strength and hydraulic characteristics), and other data as needed to support geotechnical modeling and Flotation Tailings Basin design. Note this data has previously been compiled and presented in the Preliminary Geotechnical Evaluation March 2009. This information will be incorporated into the Geotechnical Data Package Volume 1, which will present the analyses outlined in this Work Plan. Results of in-laboratory testing of liquefied shear strength of NorthMet flotation tailings, completed subsequent the March 2009 evaluation, will be incorporated into the work prescribed in this Geotechnical Modeling Work Plan.
- 2. Develop Flotation Tailings Basin slope cross-sections (i.e., geometry and stratigraphy for existing and planned conditions) for the Flotation Tailings Basin for seepage and stability modeling. Models will utilize surveyed cross-sections of the existing basin and proposed cross-sections of future dam raises; existing models will be reconfigured as needed to accommodate the modeling approach outlined in this Work Plan. This information will then be incorporated into the Geotechnical Data Package Volume 1.
- 3. Develop seepage and stability models of the Flotation Tailings Basin using Geo-Slope International, Inc. modeling software (i.e., SLOPE/W, SEEP/W, SIGMA/W and QUAKE/W; or other appropriate geomechanical models) as necessary.
- 4. Using geotechnical data from Step 1, establish design data for use in Effective Stress Stability Analysis and Undrained Strength Stability Analysis. Also utilize established criteria (Olson and Stark 2003 "Yield Strength Ratio and Liquefaction Analysis of

Version 3 5/3/2013

Slopes and Embankments" as updated by Olson 2009) to determine which materials behave in a contractive manner and could transition from non-liquefied strengths to liquefied (steady state) strengths.

Produce graphical representations of each strength data set and basis for selection of design parameters. Plots should include the number of data used to develop each plot.

- 5. Utilize design data to design slopes to achieve the following:
  - a. Effective Stress Stability Analysis (ESSA) Factor of Safety ≥ 1.5 for conditions using drained (i.e., effective-stress based) shear strength parameters. Analyze the following effective stress stability scenarios:
    - i. Existing conditions.
    - ii. Normal operating condition at incremental lift heights up to maximum dam height for normal pool elevation with steady-state seepage conditions and including reduced infiltration rates for bentonite amended exterior face of new dams.
    - iii. Long-term closure conditions (at 2,000 years) using design drained shear strengths with aging factors included (for decomposition and secondary compression).
  - b. Undrained Strength Stability Analysis (USSA) Factor of Safety ≥ 1.3 for conditions using undrained yield shear strengths for materials that are expected to behave in an undrained manner (i.e., end of construction case per dam raise). Analyze the following undrained strength stability scenarios:
    - i. Normal operating condition at incremental lift heights up to maximum dam height for normal pool elevation and including reduced infiltration rates for bentonite amended exterior face of new dams.
    - ii. Veneer stability to evaluate the stability of the bentonite amended exterior face of new dams. Veneer stability will be evaluated by computing the infinite slope Factor of Safety (using the no-seepage formulation where tailings seepage is not emerging on the slope, and the parallel-seepage formulation where tailings seepage is emerging on the slope), with the soil friction angle chosen as a conservative value based on literature review. Laboratory direct shear testing will be performed to measure a friction angle for site-specific bentonite amended tailings and the Factor of Safety will then be recomputed. Slope design will be adjusted as needed to achieve Factor of a Safety ≥ 1.3 for veneer stability.
  - c. Liquefaction Triggering and Post-Triggering Analysis Factor of Safety  $\geq 1.1$  for post-triggering slope stability considering liquefied shear strengths (computed from design liquefied strength ratios) applied to segments of materials in the triggering stability analysis with FS_{triggering} < 1.1; design drained strengths applied to materials above the capillary zone; and yield shear strength (computed from

Version 3 5/3/2013

design yield strength ratios) for all other materials. From the February 2013 workshop, analyze the following credible triggering scenarios:

#### i. Baseline – Lift 8

- Realistic phreatic surface from seepage analysis including capillarity.
- Normal pool steady-state seepage.
- Capillarity 10' above computed steady-state phreatic line.
- Liquefied shear strengths applied below top of capillary zone to materials triggered to liquefy (i.e., design liquefied shear strength utilized for flotation tailings and LTVSMC fine tailings/slimes in materials that are triggered to liquefy).

## ii. Elevated Phreatic Surface (i.e., drain ineffective) - Lift 8

- Permeability of plugged drain set to permeability of flotation tailings.
- Normal pool steady-state seepage.
- Capillarity 10' above computed steady-state phreatic line.
- Liquefied shear strengths applied below top of capillary zone to materials triggered to liquefy (i.e., design liquefied shear strength utilized for flotation tailings and LTVSMC fine tailings/slimes in materials that are triggered to liquefy).
- Consideration of baseline effective vertical stresses (prior to rise in phreatic surface).

## iii. High Construction Rate of Loading - Lift 1

- 15' of construction fill placed rapidly.
- Baseline phreatic surface including capillarity.
- Normal pool steady-state seepage.
- Capillarity 10' above computed steady-state phreatic line.
- Liquefied shear strengths applied below top of capillary zone to materials triggered to liquefy (design liquefied shear strength utilized for flotation tailings and LTVSMC fine tailings/slimes in materials that are triggered to liquefy).
- Consideration of baseline effective vertical stresses (prior to new fill placement).

## iv. Local Erosion/Scour of Slope (pipe break) - Lift 8

- Incrementally remove material above buttress (retrogressive).
- Baseline phreatic surface including capillarity.
- Normal pool steady-state seepage.
- Capillarity 10' above computed steady-state phreatic line.

Version 3 5/3/2013

- Liquefied shear strengths applied below top of capillary zone to materials triggered to liquefy (design liquefied shear strength utilized for flotation tailings and LTVSMC fine tailings/slimes in materials that are triggered to liquefy).
- Consideration of baseline effective vertical stresses (prior to erosion).
- v. Elevated Phreatic Surface (drain ineffective) w/High Pond Lift 1
  - Elevated Pond (drain ineffective).
  - Permeability of plugged drain set to permeability of flotation tailings.
  - Steady-state seepage with elevated pond set at overflow elevation.
  - Capillarity 10' above computed steady state phreatic line.
  - Liquefied shear strengths applied below top of capillary zone to materials triggered to liquefy (design liquefied shear strength utilized for flotation tailings and LTVSMC fine tailings/slimes in materials that are triggered to liquefy).
  - Consideration of initial effective vertical stresses (prior to placement of 1st lift).
- vi. Long-Term Case (20, 200, and 2000 years after closure)
  - Final geometry including surface erosion of material above buttress.
  - Impoundment phreatic surface drained down (as determined by analysis) reflecting bentonite cover.
  - Surcharge load from surficial pond.
  - Pond set at overflow elevation.
  - Design drained shear strengths with aging factors included (for decomposition and secondary compression), applied to materials above the top of the capillary zone.
  - Design liquefied shear strengths for flotation tailings and LTVSMC fine tailings/slimes) with aging factors included (for decomposition and secondary compression), applied to materials below the top of the capillary zone.
- d. Lift 8 Baseline Conditions assuming Unknown Triggering Mechanism Factor of Safety ≥ 1.1 for post-triggering slope stability applying design liquefied shear strengths to all LTVSMC fine tailings and slimes and all Flotation Tailings below top of capillary zone.
  - i. Lift 8
  - ii. Realistic phreatic surface from seepage analysis including capillarity.
  - iii. Normal pool steady-state seepage.
  - iv. Capillarity 10' above computed steady-state phreatic line.

Version 3 5/3/2013

- v. Design liquefied shear strengths applied below top of capillary zone to all LTVSMC fine tailings and slimes and all Flotation Tailings.
- e. Seismic Liquefaction (i.e., induced by seismic event).
  - i. Perform a screening analysis for triggering of liquefaction based on Boulanger and Idriss (2004). If the factor of safety against triggering is less than 1.2 for a seismic event with a 2475-year return period, perform further seismic triggering analyses as described below.
  - ii. Develop material damping coefficients for LTVSMC and NorthMet tailings.
  - iii. Use Geo-Slope software to compute initial stresses and steady-state pore-water pressure distribution.
  - iv. Apply earthquake loads via appropriate geomechanical models (such as QUAKE/W, FLAC, Plaxis, or others; earthquake loads to be obtained from probabilistic seismic hazard analysis [PSHA]) and compare results to a SLOPE/W yield undrained model (or other appropriate model) to identify the elements within the model that liquefy as a result of the seismic loading.
  - v. Use published triggering relationships and model results to determine segments along the slip surface where liquefaction will be triggered (Olson & Stark, 2003, Yield Strength Ratios and Liquefaction Analysis of Slopes and Embankments).
  - vi. Perform slope stability analysis in SLOPE/W or other appropriate geomechanical model (using liquefied shear strengths applied to elements shown to liquefy) to compute FS_{Flow} for the entire cross section.
    - If  $FS_{Flow} > 1.2$  no further action is needed.
    - If FS_{Flow} < 1.0 modify or redesign cross section.
    - If  $FS_{Flow} > 1.0$  and < 1.2, perform deformation modeling in SIGMA/W or other suitable geomechanical model to predict the magnitude of deformation. If the level of deformation is acceptable to Dam Safety, no further action is needed. If the level of deformation is unacceptable to Dam Safety, modify or redesign cross section.

## 6. Reporting:

Volume 1 – Version 4 will present the background/supporting information and results of the Flotation Tailings Basin geotechnical analyses described in this Work Plan. It will contain the pertinent content previously presented in the Preliminary Geotechnical Evaluation – March 2009 and Geotechnical Data Packages – Volume 1 – Versions 1 through 3. However, analysis methods and results will supersede contents of the previously published Geotechnical Evaluation and Data Packages. Included in Volume 1 – Version 4 (and/or the Flotation Tailings Management Plan) will be descriptions and drawings depicting existing conditions and what will be built, results of geotechnical analyses for operating and post-closure conditions, and presentation of all model input parameters and model outputs. Where model input parameters are derived from multiple data points, the approach utilized for input parameter selection will be described. Included will be a description of how stability is anticipated to vary over time following

Version 3 5/3/2013

Flotation Tailings Basin closure. Include design and operating requirements necessary to maintain required slope stability Factors of Safety for the critical slope cross-section (assumed to be Cross-Section F for SDEIS modeling). This detail shall be included in Volume 1 – Version 4 and/or the Flotation Tailings Management Plan.

The following paragraphs describe the work that will be included in a future Geotechnical Data Package – Volume 1 – Version 5, Flotation Tailings Basin, which is expected to provide information for the FEIS and Dam Safety permitting.

- 1. After MDNR publication of the SDEIS and prior to Final EIS (FEIS) publication and Permitting, execute a supplement to this Work Plan to include:
  - a. For normal operation conditions with maximum lift height perform a sensitivity analysis using the USSA slope stability model with yield undrained shear strength values. The Flotation Tailings Basin designer's engineering judgment shall be used to establish a range for these data inputs and the basis for the range shall be described. Evaluate the impact of data variability on computed slope stability Factors of Safety for the purpose of focusing operational-phase data gathering on the most critical stability model data inputs.
  - b. Prepare and execute a second Sensitivity Analysis the intent of which is to evaluate the variation in Factor of Safety (and the probability of FS < 1.0) for an unknown triggering case, using the ESSA and yield USSR strengths utilized for the current Work Plan, but with USSR_(Liq) varied within the range identified during liquefied strength design parameter evaluation.
- 2. Following MDNR Dam Safety review and approval of Critical Cross-Section modeling process/procedures and outcomes, proceed with modeling cross-sections G (north side of Cell 2E) and N (south side of Cell 1E) for final Flotation Tailings Basin design (for input to FEIS or Permitting as determined by MDNR).

Version 3 5/3/2013

# Hydrometallurgical Residue Facility Geotechnical Models for SDEIS, FEIS and Permitting:

The objective of the Hydrometallurgical Residue Facility Geotechnical Modeling for the SDEIS, FEIS and Permitting is to:

- demonstrate the ability of the most sensitive slope cross-section to comply with the required slope stability Factors of Safety for global stability,
- demonstrate the ability of the composite liner system to comply with infinite slope stability Factor of Safety requirements, and to
- demonstrate the capability of the composite liner system to withstand the strain anticipated due to differential settlement that may occur in the facility foundation materials.

The following is a step-by-step summary of the planned Hydrometallurgical Residue Facility geotechnical modeling process.

- 1. Gather existing conditions data (i.e. facility foundation material stratigraphy and strength data, hydrogeologic data and other data as needed to support geotechnical modeling of the Hydrometallurgical Residue Facility). Note portions of this data have previously been compiled and presented in the Preliminary Geotechnical Evaluation March 2009. This information will be incorporated into the Geotechnical Data Package Volume 2 and will be supplemented with additional facility location-specific data. Data on existing baseline water sources at the site, including surface discharges from the surrounding highlands, will be gathered for consideration during hydrometallurgical residue facility design. The facility will be designed to accommodate any such surface discharges and hence these discharges will not impact geotechnical modeling of the hydrometallurgical residue facility.
- Gather additional residue strength and hydraulic conductivity data and/or representative
  published data for use in facility design. This information will be incorporated into the
  Geotechnical Data Package Volume 2 to the extent needed to facilitate the modeling
  outlined herein.
- 3. Develop residue facility layout and slope cross-sections (i.e., geometry and stratigraphy for existing and planned conditions) for proposed residue facility stability and deformation modeling. Note seepage through the residue facility embankments will be inhibited by the composite liner system and seepage modeling will be an unnecessary component of this analysis.
- 4. Develop global and infinite slope stability models and deformation models of the facility using Geo-Slope International, Inc. modeling software (i.e., SLOPE/W, SEEP/W and SIGMA/W as necessary). Model the following:
  - a. Deformation of hydromet residue facility foundation and liner system.

Version 3 5/3/2013

- b. Infinite slope stability of hydromet residue facility liner system (if necessary/applicable).
- c. Global stability of hydromet residue facility embankments.

Model maximum residue facility dam height with minimum and maximum pond elevation, and post closure – cover effective with minimum pond elevation. Model for effective shear stress conditions. Modeling for undrained shear strength conditions will not be necessary due to lined facility design with imported and mechanically placed dam fill and lack of seepage through the dam.

- 5. Configure geotechnical data for model input. Model input parameters will be based on data collected for and presented in the Preliminary Geotechnical Evaluation March 2009. For materials to be imported for construction, engineering judgment will be used to select conservative shear strength parameters for input to the slope stability analysis and liner deformation analysis.
- 6. Use SLOPE/W to calculate the Factor of Safety for the following conditions:
  - a. Effective Stress Stability Analysis (ESSA) Factor of Safety  $\geq 1.5$
  - b. Slope failures on external face and internal face of residue facility embankments.
- 7. Perform infinite slope stability analysis to confirm that load from residue deposition will be transferred to facility foundation soils and will not induce excess strain in facility liner materials.
- 8. Perform deformation modeling to predict magnitude of deformation and resulting strain in the facility liner system for comparison to allowable strain in liner system. Allowable strains are material-specific and will be determined from manufacturers specifications for the materials selected for the facility liner.
- 9. Report final basin design and operating requirements necessary to maintain required slope stability Factor of Safety and deformation requirements.
- 10. Reporting the Geotechnical Data Package Volume 2 will present the background/supporting information and results of the Hydrometallurgical Residue Facility geotechnical analyses described in this Work Plan. Included will be descriptions and drawings depicting existing conditions and what will be built, results of geotechnical analyses for operating and post-closure conditions, and presentation of all model input parameters and model outputs. Where model input parameters are derived from multiple data points, the approach utilized for input parameter selection will be described. Included will be a description of how stability is anticipated to vary over time.

Version 3 5/3/2013

## Stockpile Geotechnical Models for SDEIS, FEIS and Permitting:

The objective of the Stockpile Geotechnical Modeling for the SDEIS, FEIS and Permitting is to comply with Mn Rule 6132.2400 (stockpile slopes will be as required by 6132.2400 Subp. 2. B. and stockpile foundations will be as required by 6132.2400 Subp. 2. A. (1)). These are design requirements that have been established to insure acceptable slope stability Factors of Safety for global stability and acceptable foundation stability, the latter of which relates to the capability of the geomembrane liner system to withstand the strain anticipated due to differential settlement that may occur in the stockpile foundation materials.

The following is a step-by-step summary of the planned Stockpile geotechnical modeling process.

- 1. Gather existing conditions data (i.e. facility foundation material stratigraphy and strength data and other data as needed to support foundation design). Existing site information will be utilized for analysis performed in support of the SDEIS and FEIS, with additional data gathered and designs updated as needed for final design in conjunction with permitting. Existing information will be incorporated into the Geotechnical Data Package Volume 3.
- 2. Configure stockpile slopes to meet or exceed minimum dimensional requirements established by Mn Rule 6132.2400.
- 3. Perform stockpile subgrade settlement analysis to predict magnitude of deformation and resulting strain in the stockpile liners for comparison to allowable strain in the liner system. Allowable strains are material-specific and will be determined from manufacturers specifications for the materials selected for the stockpile liners.
- 4. Report final stockpile design and operating requirements necessary to maintain required slope stability Factors of Safety and liner performance requirements.
- 5. Reporting the Geotechnical Data Package Volume 3 will present the background/supporting information and results of the Stockpile geotechnical analyses described in this Work Plan. Included will be descriptions and drawings depicting existing conditions and what will be built, results of geotechnical analyses for operating and post-closure conditions, and presentation of all model input parameters and model outputs. Where model input parameters are derived from multiple data points, the approach utilized for input parameter selection will be described. Included will be a description of how stability is anticipated to vary over time.

## **Attachment I**

Stockpile Stability Evaluation

## WASTE ROCK STOCKPILES STABILITY ANALYSIS

#### 1.0 INTRODUCTION

This document summarizes the approach and results of preliminary stability analyses for the proposed waste rock stockpiles at the PolyMet NorthMet Site located near Babbitt, Minnesota. Due to limited information on subsurface conditions, especially in lowland areas, the analyses presented herein are expected to be updated based on the results of Phase II Geotechnical Investigation.

#### 2.0 OBJECTIVE

Perform slope stability analyses for waste rock stockpiles considering both static and pseudo-static (earthquake loading) conditions. Calculate factors of safety (FS) for operational and reclaimed/closure conditions.

Stability analyses were conducted for: (1) reactive stockpiles and (2) non-reactive, i.e., Category 1, stockpile. Reactive stockpiles include Category 2/3 stockpile, Category 4 stockpile, and Ore Surge Pile. The liner system for reactive stockpiles consists of LLDPE geomembrane overlying soil liner or prepared subgrade. Category 1 stockpile is designed without the liner system. Category 1 stockpile will be reclaimed while the reactive stockpile materials will be used to backfill pits prior to closure. Consequently, slope stability analyses for closure configurations were performed only for Category 1 stockpile.

## 3.0 STABILITY MODEL INPUTS

## 3.1 Design Sections

The following critical design sections were analyzed:

## 3.1.1 Reactive Stockpiles

- Design section R-1: Waste rock stockpile, operational configuration, one lift placed in two stages
  - Waste rock height of 40 feet realized in two stages
  - Interbench slopes at 1.4(H):1(V)
  - Height of the initial fill over liner (stage 1): 15 feet
  - Height of the remaining fill (stage 2): 25 feet
  - Assume 10-foot-wide bench between initial 15-foot-thick first lift (stage 1) and the remainder of the first lift extending to 40 feet
- Design section R-2: Waste rock stockpile, operational configuration, ultimate height
  - Waste rock height of 160 feet (a maximum height for reactive stockpiles at ultimate buildout)
  - Interbench slopes at 1.4(H):1(V)



May 2012 2 113-2209

## 3.1.2 Category 1 Stockpiles

- Design section C1-1: Waste rock stockpile, operational configuration, one lift
  - Waste rock height of 40 feet
  - Interbench slopes at 1.4(H):1(V)
- Design section C1-2: Waste rock stockpile, operational configuration, ultimate height
  - Waste rock height of 160 feet
  - Interbench slopes at 1.4(H):1(V)
- Design section C1-3: Waste rock stockpile, reclaimed configuration, ultimate height
  - Waste rock height of 160 feet
  - Interbench regarded to 2.5(H):1(V)
- Design section C1-4: Waste rock stockpile, reclaimed configuration, ultimate height
  - Waste rock height of 200 feet
  - Interbench regarded to 3(H):1(V)
- Design section C1-5: Waste rock stockpile, reclaimed configuration, ultimate height
  - Waste rock height of 240 feet
  - Interbench slopes regarded to 3.75(H):1(V)

The design section geometries are provided in Figures 1 through 7.

#### 3.2 Given

- Pre-construction topography, current topography, and proposed configuration of the waste rock stockpiles
- Geotechnical site and laboratory exploration results
- Peak ground acceleration at the site is 0.05g

## 3.3 Material Properties

The parameters presented in Table 1 were used in the slope stability analysis.

Table 1 Material Strength Parameters

Material	Total Unit Weight (pcf)	Effective Friction Angle (degrees)	Effective Cohesion (psf)
Waste Rock	126.0	35.5	0.1
Construction Fill	130.6	34.6	0.1
Smooth LLDPE/Soil Liner Interface ¹	57.4	19.0	0.0
Existing Subgrade (Peat)	80.0	17.0	0.0
Bedrock	170.0	55.0	200.0

Notes:

1. Estimated from Golder Database (2012).



May 2012 3 113-2209

#### 3.4 Method

Use Spencer's method (Spencer, 1967) implemented in RocScience's two-dimensional limited equilibrium slope stability analysis program SLIDE 6.017 (2012). Minimum FS was determined using the program's search algorithm for both circular and non-circular (block) failure surfaces. Pseudo-static design was conducted by using a horizontal seismic factor of 0.025g, which corresponds to half of the peak ground acceleration of 0.05g (Hynes-Griffin and Franklin, 1984). Conceptual geometries for one lift and the ultimate heights were investigated to establish the most sensitive mechanism of failure for the waste rock stockpile slopes.

## 3.5 Assumptions

#### 3.5.1 Geometry

- Nominal lift height is 40 feet
- Closure bench width is a minimum of 30 feet, measured from the crest of the lower lift to the toe of the next lift
- Temporary operational slopes are 1.4(H):1(V)
- Reclamation slope design options include 2.5(H):1(V), 3(H):1(V), and 3.75(H):1(V)
- The critical (maximum) subgrade and liner slopes are 0.5%
- The phreatic surface is located 2 feet over the liner/subgrade surface, i.e., bottom 2 feet of the waste rock are saturated per design criteria
- Reactive stockpiles
  - Liner system is a minimum of 1 foot of soil liner overlain by LLDPE geomembrane
  - Stockpiles will be used for pit backfill, i.e., no closure configurations are considered
- Category 1 stockpile
  - The unsuitable soils within first 100 feet from the toe of the Category 1 stockpile will be excavated and replaced with structural fill
  - Stockpiles will be re-graded to reclamation slopes of either 2.5(H):1(V), 3(H):1(V), or 3.75(H):1(V)

#### 3.5.2 Failure Surfaces

- For operational conditions, only surfaces resulting in significant failure were considered. Consequently, a minimum thickness of failure zone of 30 feet was enforced in the analyses
- For closure conditions, a minimum depth of failure surface of 15 feet was enforced

## 3.5.3 Minimum Acceptable Factors of Safety

- Minimum acceptable FS for static condition at closure is 1.5
- Minimum long-term (effective stress) operational static FS for deep seated failures (waste rock thickness in excess of 30 feet): 1.3
- Minimum acceptable FS for pseudo-static conditions at closure is 1.1
- Minimum acceptable FS for temporary operational slopes under static conditions is 1.1



May 2012 4 113-2209

 Minimum acceptable FS for temporary operational slopes under upset and pseudo-static conditions is 1.0

## 4.0 CALCULATIONS

## 4.1 Slope Stability Analyses

Input and output files for the SLIDE seepage and slope stability analyses for each design section and loading condition are presented in Attachment 1.

## 4.2 Infinite Slope Analysis for Geomembrane Cover (Category 1 Stockpile)

Stability analyses for closure configurations were conducted assuming that 60-mil HDPE geomembrane will be placed over the Category 1 stockpile after re-grading is completed. The waste rock is expected to be moisture conditioned, rolled, and compacted prior to geomembrane placement. Alternatively, a soil liner or selected subgrade soil layer may be placed prior to LLDPE installation to ensure good contact and prevent puncture of the geomembrane.

Based on the Golder Database (2012) on liner interfaces, the residual interface friction angle between a 60-mil HDPE geomembrane and soil layer at low confining stresses of 29 degrees was adopted. Cohesion along the interface is assumed to be zero.

Assuming a one-dimensional failure, the FS can be calculated as follows:

$$FS = \tan \varphi' / \tan \beta \tag{1}$$

Where FS = factor of safety,  $\phi'$  = effective geomembrane-soil interface friction angle, and  $\beta$  = slope angle.

The evaluated reclamation slopes include 2.5(H):1(V), 3(H):1(V), or 3.75(H):1(V). The computed FSs are summarized in Table 2.

Table 2 Factors of Safety for Closure Configurations

Reclamation Slope	Slope Angle (Degrees)	Computed FS	FS Design Criteria
2.5(H):1(V) ¹	21.8	1.72	1.5
3(H):1(V) ²	18.4	1.66	1.5
3.75(H):1(V) ²	14.9	2.08	1.5

Notes:

- Assume vegetative cover placement and the effective friction angle of 34.6 degrees.
- 2. Assume geomembrane cover placement and the interface friction angle of 29 degrees.

#### 5.0 RESULTS

Results of the slope stability analyses are summarized in Table 3. Design section R-2 (the temporary operational 1.4(H):1(V) slopes for the reactive stockpiles) exhibits the lowest FSs.



Table 3 Summary of Slope Stability Analyses, Conceptual Waste Rock Stockpile Geometries

File Name	Design Section	Static or Seismic	Height (ft)	Failure Through	Surface Type	Computed FS	FS Design Criteria
R-1-c	R-1	Static	40	Middle of the waste rock stockpile, exit at toe	Circular	2.04	≥ 1.3
R-1-nc	R-1	Static	40	Middle of the waste rock stockpile, along the liner interface, exit at toe	Block	1.39	≥ 1.3
R-1-nc-s	R-1	Seismic	40	Middle of the waste rock stockpile, along the liner interface, exit at toe	Block	1.31	≥ 1.0
R-2-c	R-2	Static	160	Middle of the waste rock stockpile, exit at toe	Circular	1.55	≥ 1.3
R-2-nc	R-2	Static	160	Middle of the waste rock stockpile, along the liner interface, exit at toe	Block	1.39	≥ 1.3
R-2-nc-s	R-2	Seismic	160	Middle of the waste rock stockpile, along the liner interface, exit at toe	Block	1.30	≥ 1.0
C1-1-c	C1-1	Static	40	Middle of the waste rock stockpile, shallow subgrade, exit near toe	Circular	1.53	≥ 1.3
C1-1-nc	C1-1	Static	40	Middle of the waste rock stockpile, along the waste rock and subgrade interface, exit at toe	Block	1.56	≥ 1.3
C1-1-c-s	C1-1	Seismic	40	Middle of the waste rock stockpile, shallow subgrade, exit near toe	Circular	1.45	≥ 1.0
C1-2-c	C1-2	Static	160	Middle of the waste rock stockpile, through subgrade and structural fill, exit near toe	Circular	1.93	≥ 1.3
C1-2-nc	C1-2	Static	160	Middle of the waste rock stockpile, along the waste rock and subgrade interface, exit at toe	Block	2.09	≥ 1.3
C1-2-c-s	C1-2	Seismic	160	Middle of the waste rock stockpile, through subgrade and structural fill, exit near toe	Circular	1.78	≥ 1.0
C1-3-c	C1-3	Static	160	Middle of the waste rock stockpile, through subgrade and structural fill, exit near toe	Circular	1.86	≥ 1.5
C1-3-nc	C1-3	Static	160	Middle of the waste rock stockpile, along the waste rock and subgrade interface, exit at toe	Block	2.19	≥ 1.5
C1-3-c-s	C1-3	Seismic	160	Middle of the waste rock stockpile, through subgrade and structural fill, exit near toe	Circular	1.71	≥ 1.1
C1-4-c	C1-4	Static	200	Middle of the waste rock stockpile, through subgrade and structural fill, exit near toe	Circular	2.04	≥ 1.5
C1-5-c-s	C1-4	Seismic	200	Middle of the waste rock stockpile, through subgrade and structural fill, exit near toe	Circular	1.86	≥ 1.1
C1-5-c	C1-5	Static	240	Middle of the waste rock stockpile, through subgrade and structural fill, exit near toe	Circular	2.31	≥ 1.5
C1-5-c-s	C1-5	Seismic	240	Middle of the waste rock stockpile, through subgrade and structural fill, exit near toe	Circular	2.07	≥ 1.1

Because of the lack of site samples to conduct site specific laboratory testing to determine the smooth LLDPE/soil liner interface strength, a sensitivity analysis was performed to assess the variability in the calculated FS with changes in the interface friction angle for the reactive stockpiles. The results for the most critical temporary operational slope (section R-2) are shown in Table 4. The plot for the sensitivity analysis is included in Attachment 1.

Table 4 Summary of Slope Stability Back Analyses for Different Factors of Safety

Design Section	Material	Required Effective Friction Angle (degrees)	Computed FS	FS Design Criteria
R-2	Smooth LLDPE/Soil Liner Interface	22.6	1.5	≥1.3
R-2	Smooth LLDPE/Soil Liner Interface	19.2	1.4	≥1.3
R-2	Smooth LLDPE/Soil Liner Interface	15.7	1.3	≥1.3



## 6.0 CONCLUSIONS

All design sections meet the minimum FSs, assuming a LLDPE/soil liner interface friction angle of 19 degrees. The Design Section R-2, with the maximum height of failure surface of 120 feet, a slope face of 1.4(H):1(V), and a liner grade of 0.5%, represents the most critical condition. Note that the staged first lift placement is expected to result in an increased FS.

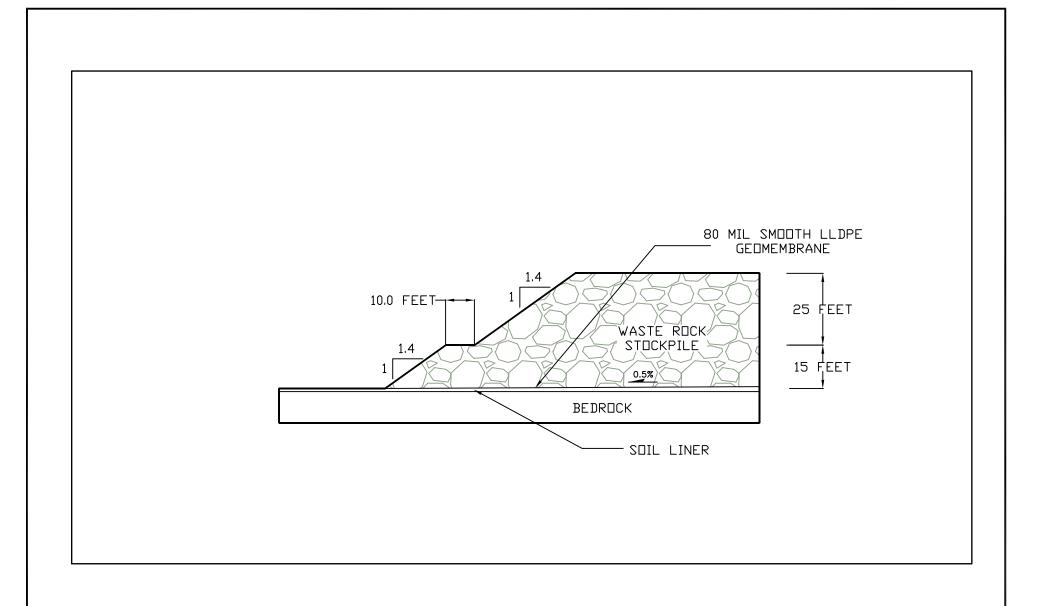
The results of the slope stability analysis for the critical design section indicate that a minimum LLDPE/soil liner interface friction angle of 15.7 degrees will be required to achieve an FS of 1.3 under static operation conditions based on a block failure mode.

In general, static conditions are more critical than seismic conditions due to the higher required FSs and relatively low design peak ground acceleration.

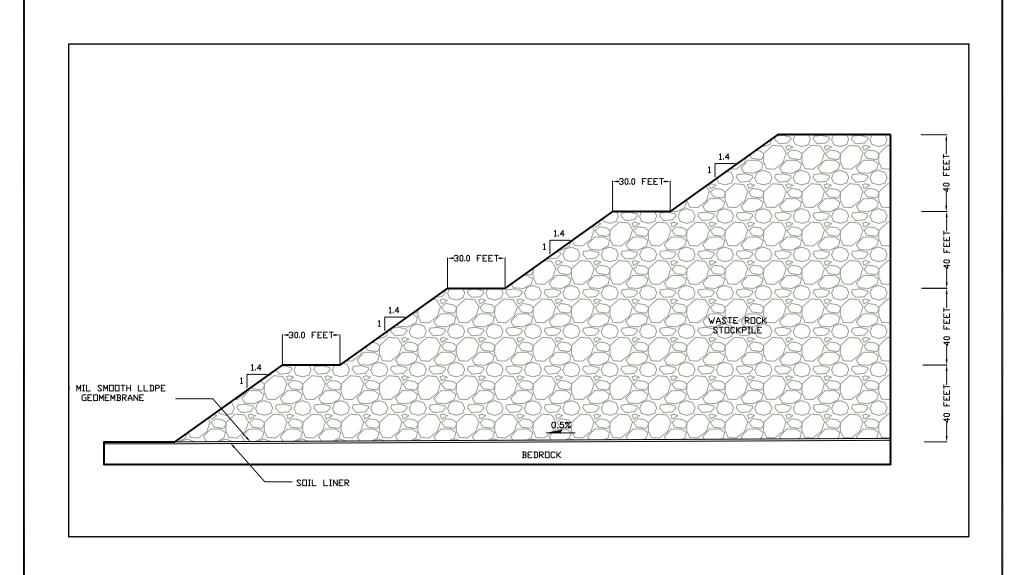
Closure calculations indicate that interbench slopes of 3H:1V or shallower are likely to be adequate for the 60-mil HDPE geomembrane placement.

## 7.0 REFERENCES

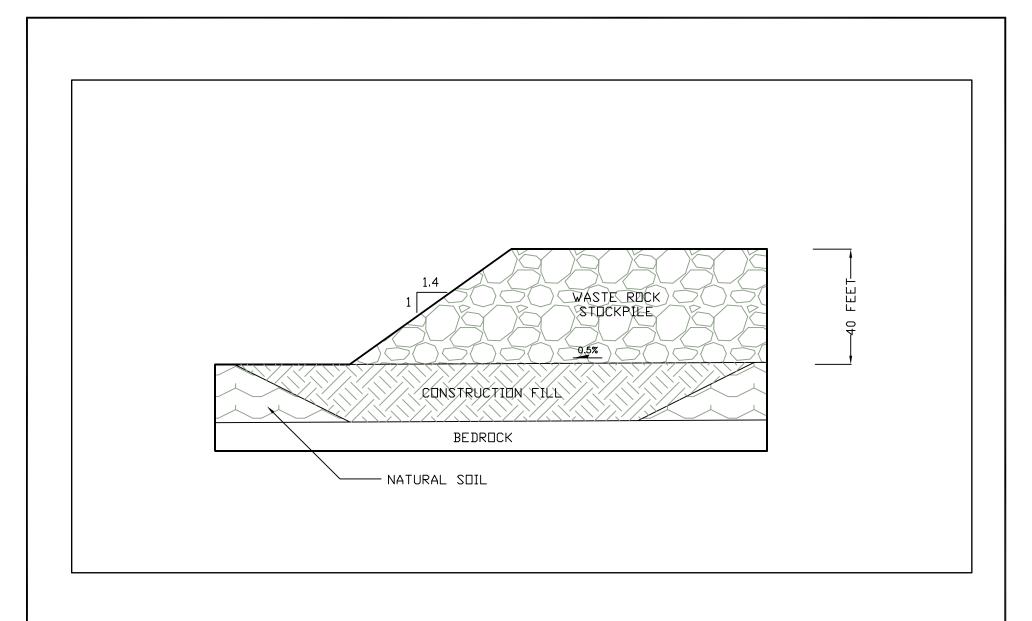
Golder Associates Inc. 2012. "Direct Shear Database."


Hynes-Griffin, M.E., and A.G. Franklin. 1984. *Rationalizing the Seismic Coefficient Method*. U.S. Department of the Army. Waterways Experiment Station. U.S. Army Corps of Engineers (USACE). Miscellaneous Paper GL-84-13.

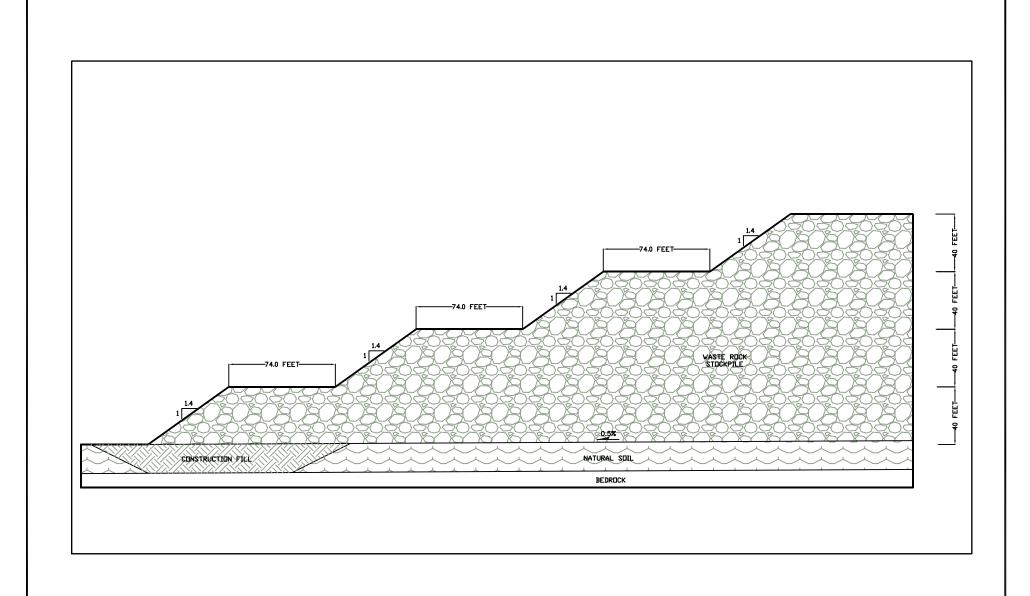
RocScience. 2012. SLIDE V6.017, Toronto.


Spencer, E. 1967. "A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces." *Geotechnique*, Vol. XVII, No. 1, pp. 11-26.

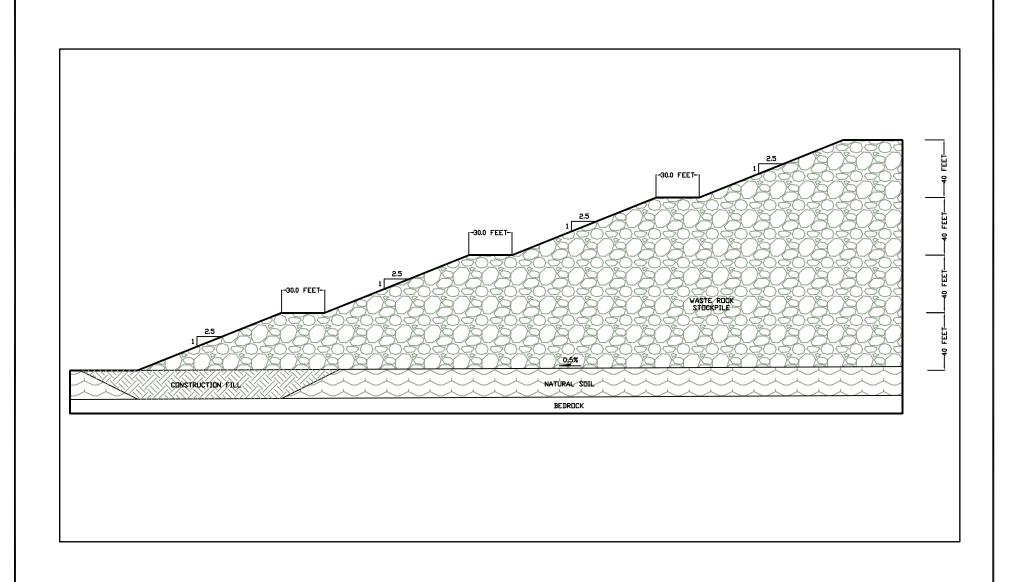




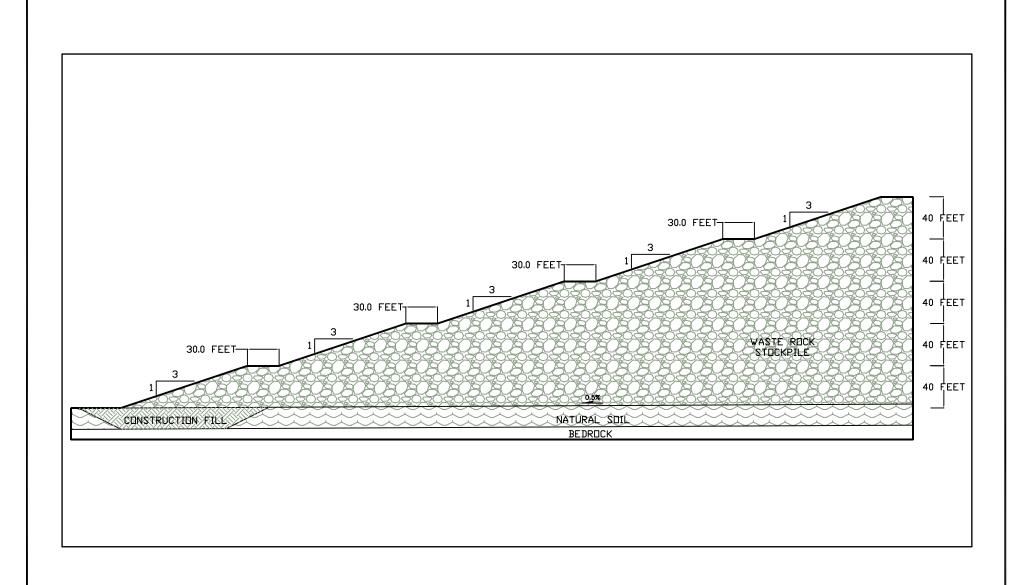




Golder Associates Denver, Colorado	DESIGN SECTION R-1		
POLYMET MINING CORPORATION NORTHMET PROJECT	DRAWN JP	MAY 18, 2012	^{JOB NO.} 113-2209
	CHECKED	N.1.5.	DWG. NO.
	REVIEWED	File NO. Figures-sections.dwg	FIGURE NO. 1

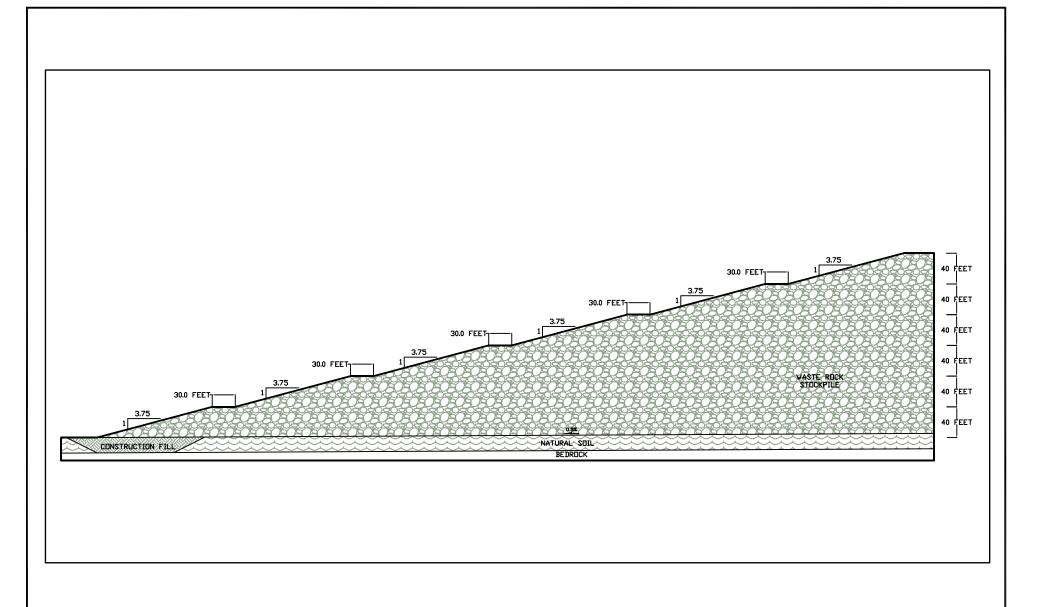



Golder Associates Denver, Colorado	DESIGN SECTION R-2		
POLYMET MINING CORPORATION NORTHMET PROJECT HOYT LAKES, MINESOTA	DRAWN JP CHECKED REVIEWED	MAY 18, 2012  SCALE N.T.S.	113-2209 DWG, NO. FIGURE NO. 2




Golder Associates Denver, Colorado	DESIGN SECTION C1-1		
POLYMET MINING CORPORATION NORTHMET PROJECT HOYT LAKES, MINESOTA	DRAWN JP	MAY 18, 2012	^{ЈОВ NO.} 113-2209
	CHECKED	SCALE N.T.S.	DWG. NO.
	REVIEWED	FILE NO. Figures-sections.dwg	FIGURE NO. 3

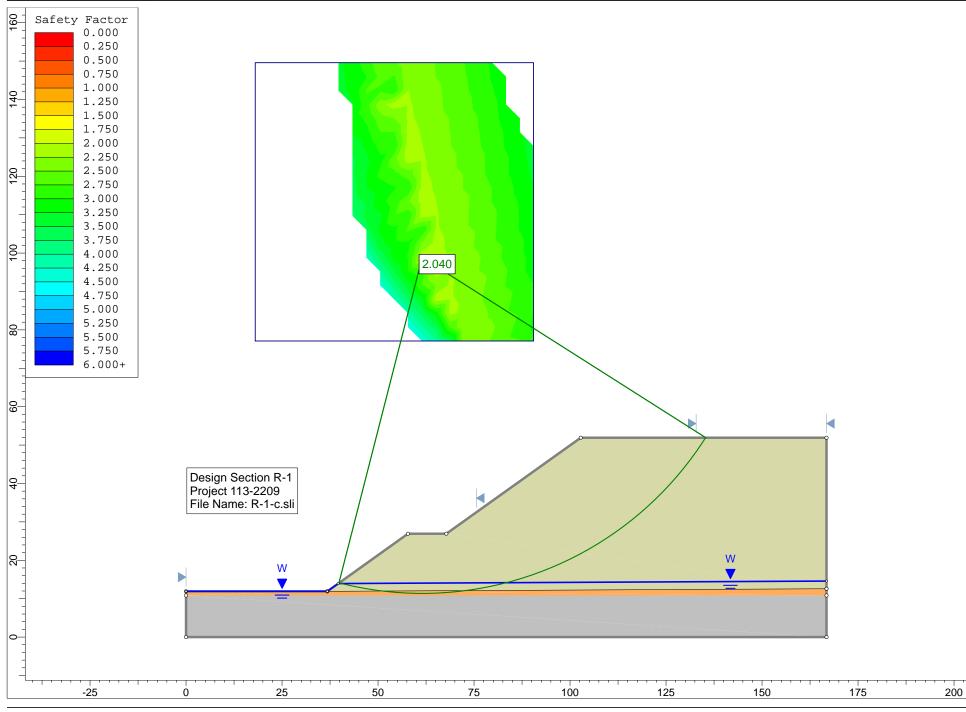



Golder Associates Denver, Colorado	DESIGN SECTION C1-2		
CLIENT/PROJECT POLYMET MINING CORPORATION	DRAWN JP	MAY 18, 2012	JOB NO. 113-2209
NORTHMET PROJECT		N.1.5.	DWG. NO.
HOYT LAKES, MINESOTA	REVIEWED	FILE NO. Figures-sections.dwg	FIGURE NO. 4



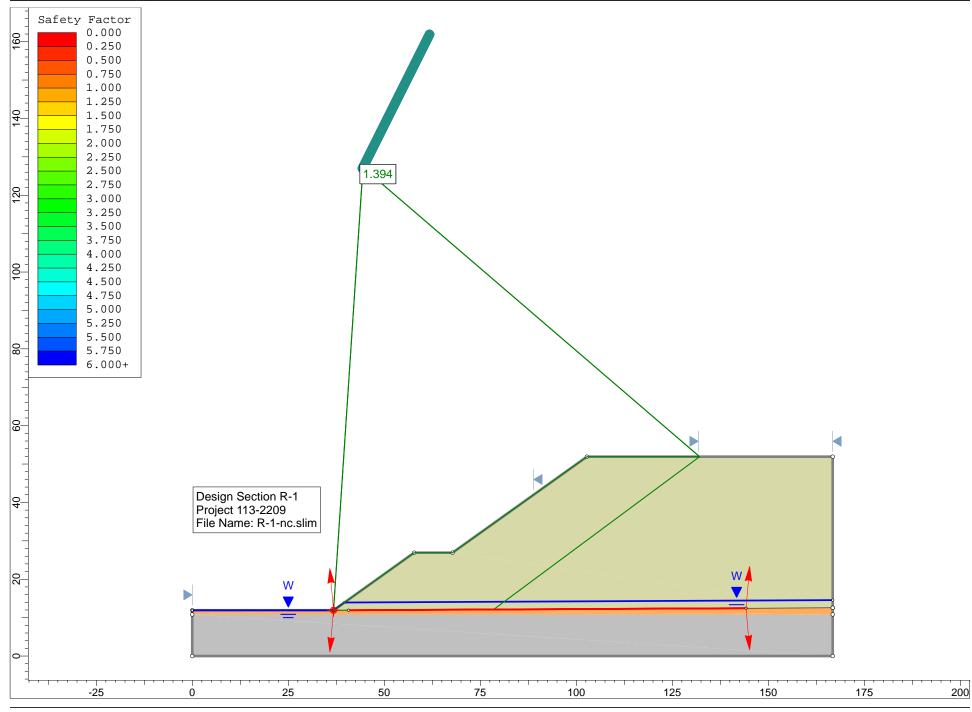
Golder Associates Denver, Colorado	DESIGN SECTION C1-3		
CLIENT/PROJECT POLYMET MINING CORPORATION	DRAWN JP	DATE MAY 18, 2012	JOB NO. 113-2209
NORTHMET PROJECT		N.1.5.	DWG. NO.
HOYT LAKES, MINESOTA	REVIEWED	FILE NO. Figures-sections.dwg	FIGURE NO. 5




Golder Denver, Colorado	DESIGN SECTION C1-4		
CLIENT/PROJECT POLYMET MINING CORPORATION	DRAWN JP	DATE MAY 18, 2012	^{JOB NO.} 113-2209
NORTHMET PROJECT	CHECKED	SCALE N.T.S.	DWG. NO.
HOYT LAKES, MINESOTA	REVIEWED	FILE NO. Figures-sections.dwg	FIGURE NO. 6

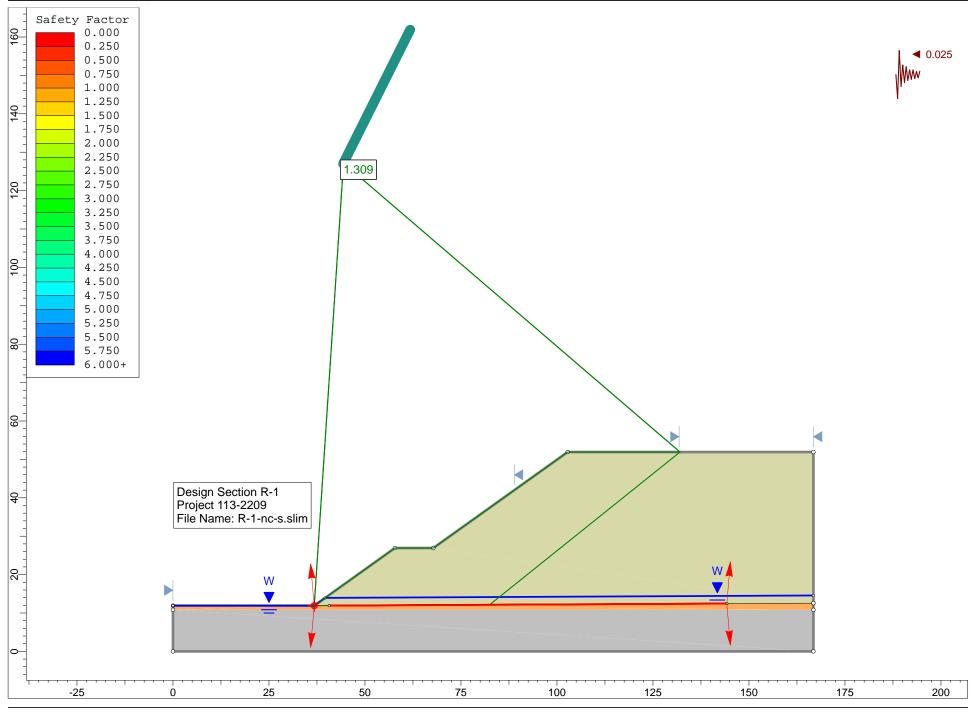


Golder Associates Denver, Colorado	DESIGN SECTION C1-5		
CLIENT/PROJECT POLYMET MINING CORPORATION	DRAWN JP	DATE MAY 18, 2012	^{JOB NO.} 113-2209
NORTHMET PROJECT	CHECKED	SCALE N.T.S.	DWG. NO.
HOYT LAKES, MINESOTA	REVIEWED	FILE NO. Figures-sections.dwg	FIGURE NO. 7


ATTACHMENT 1
SLIDE RESULTS






R-1-c.slim Scale: 1:300

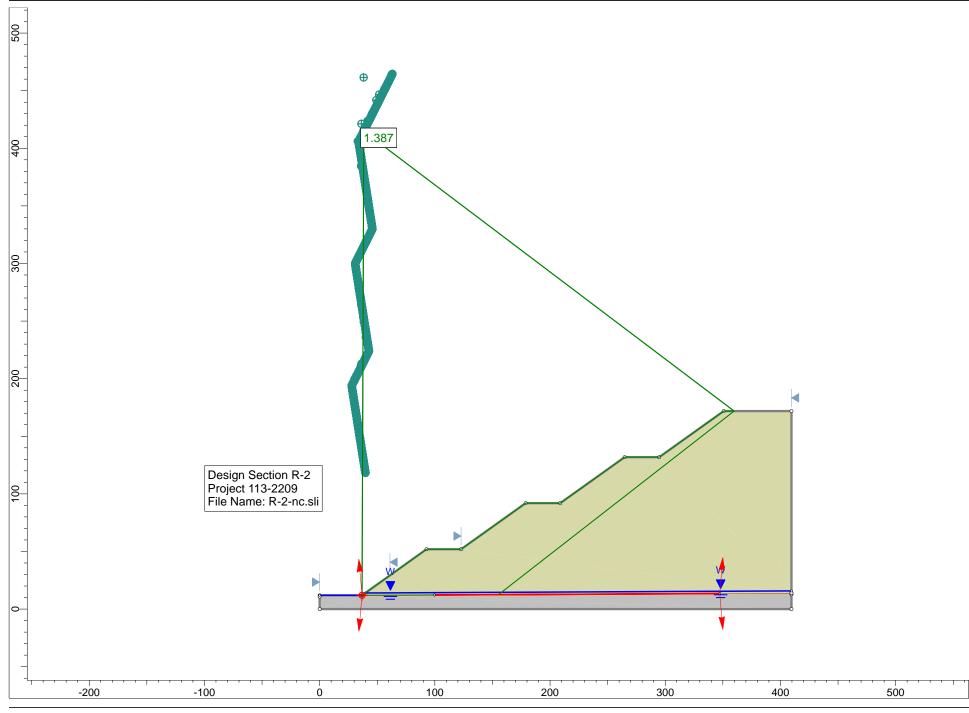




R-1-nc.slim Scale: 1:300






R-1-nc-s.slim Scale: 1:300

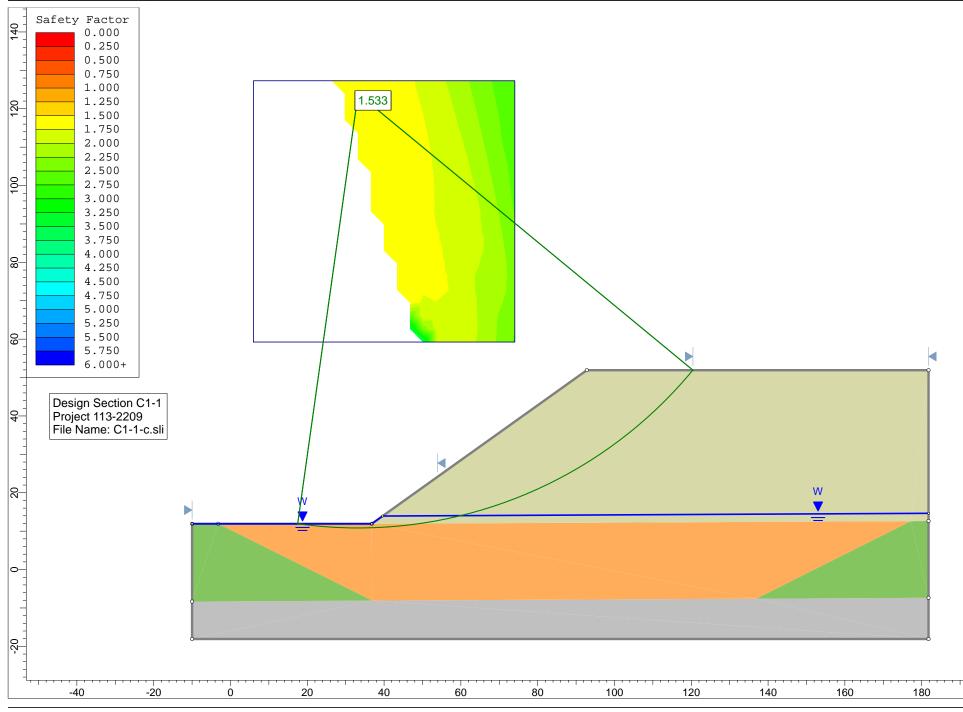




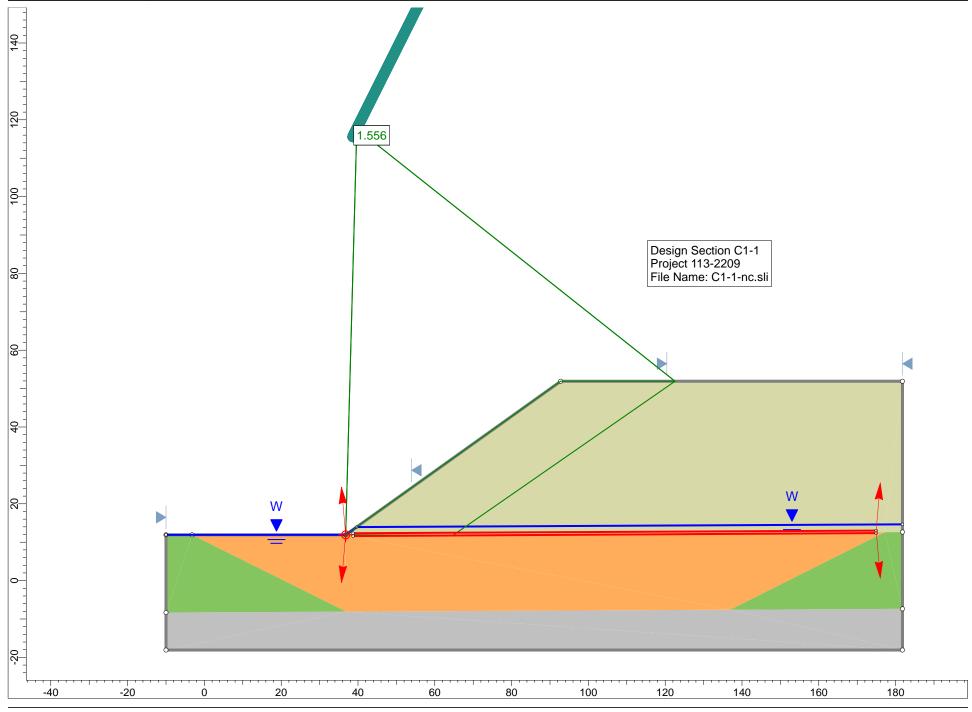

R-2-c.slim Scale: 1:1000





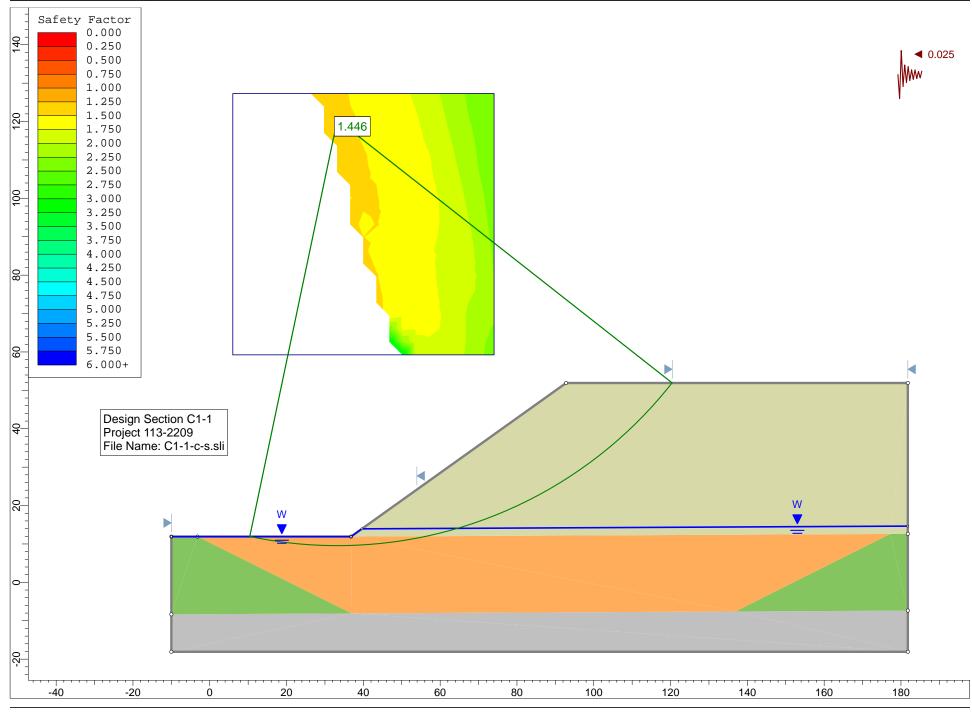

R-2-nc.slim Scale: 1:1000



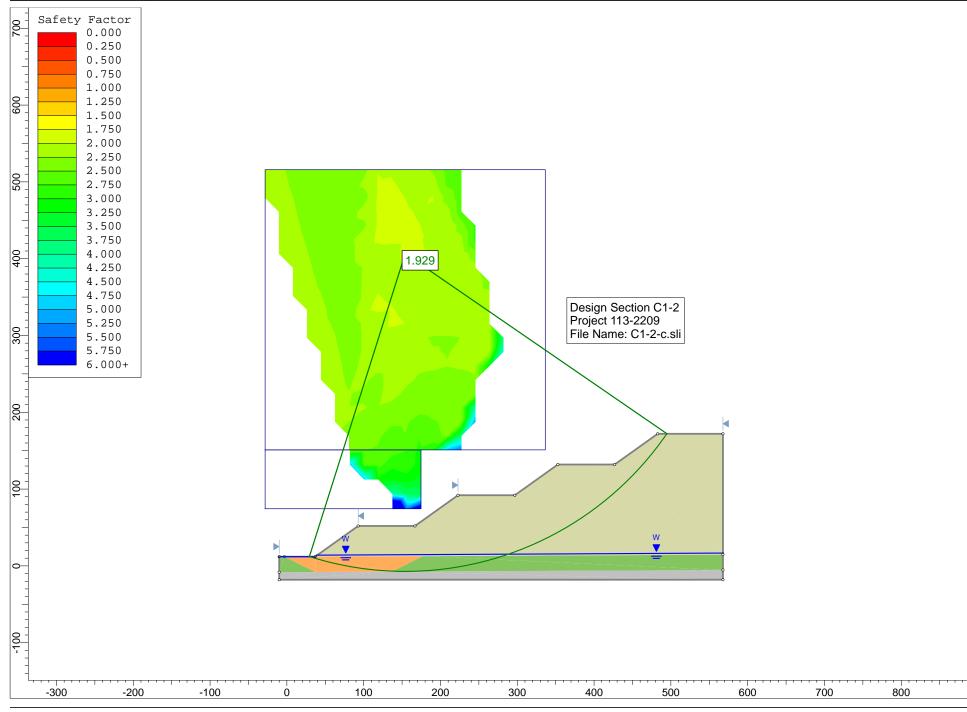



R-2-nc-s.slim Scale: 1:1000



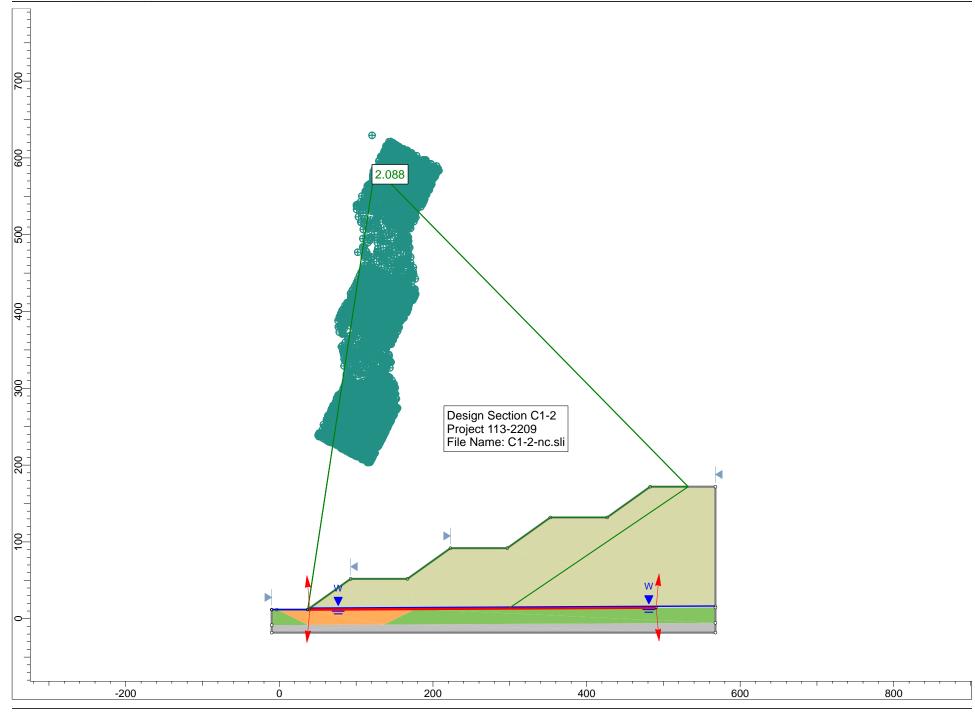




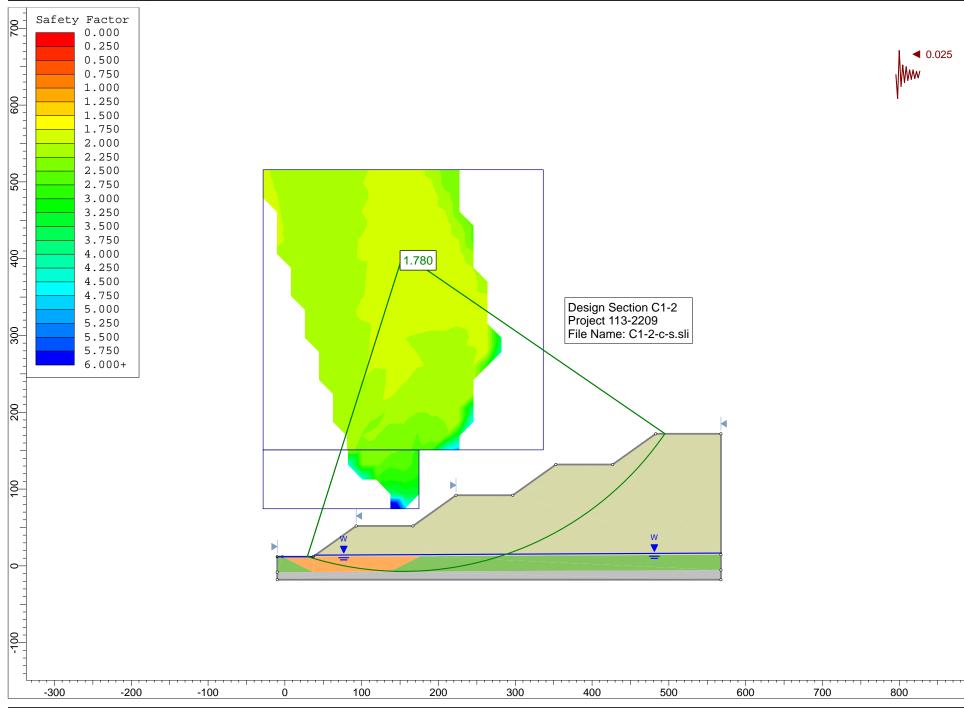

C1-1-nc.slim Scale: 1:300





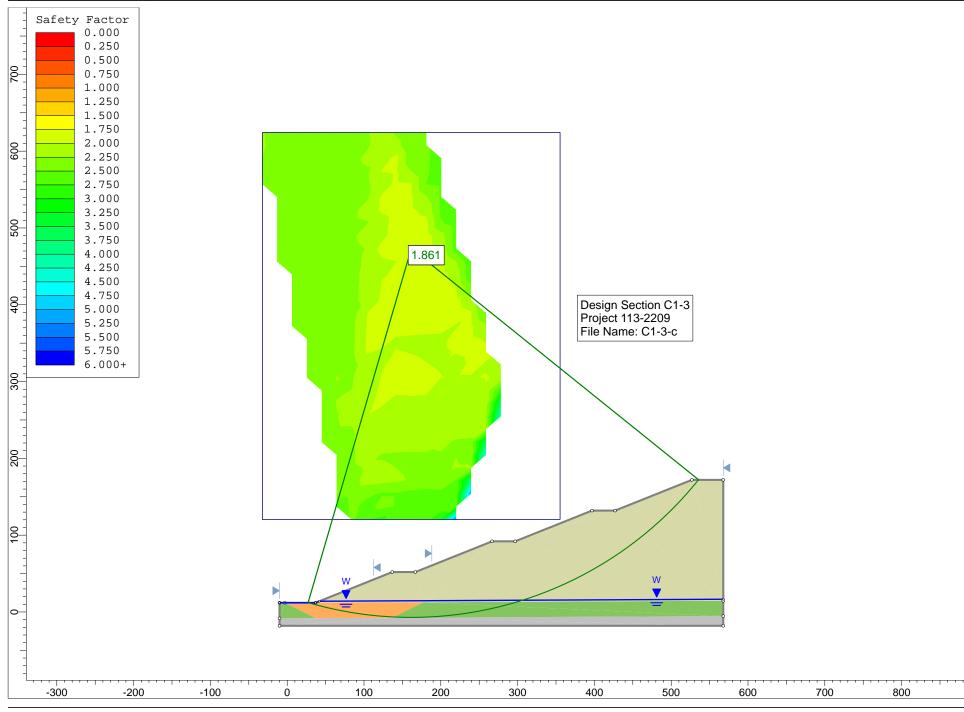






C1-2-c.slim Scale: 1:1500

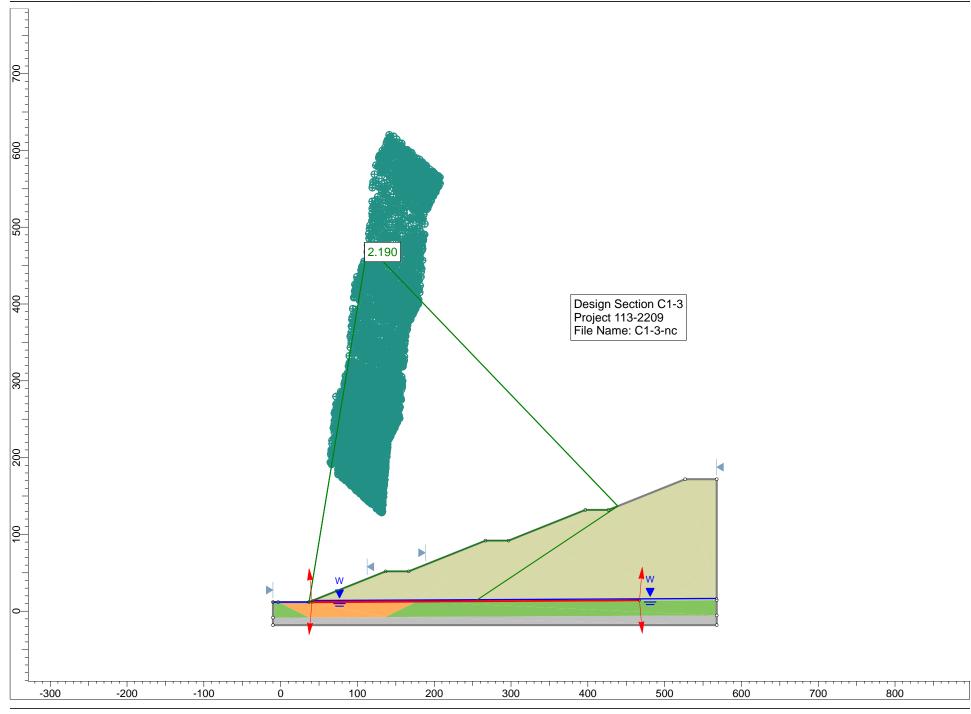





C1-2-nc.slim

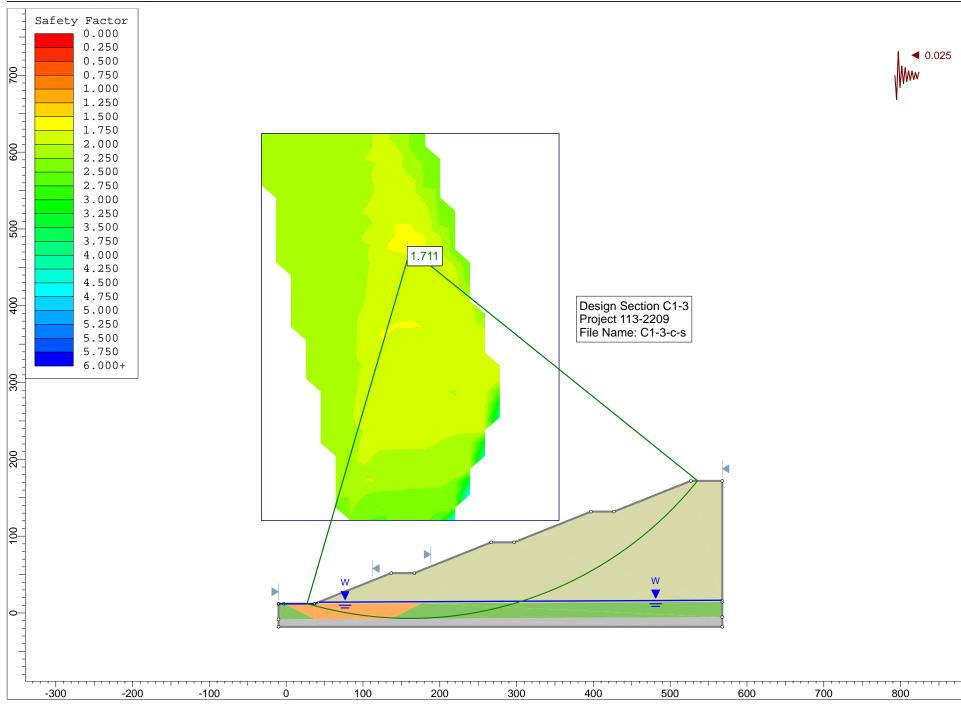





C1-2-c-s.slim Scale: 1:1500

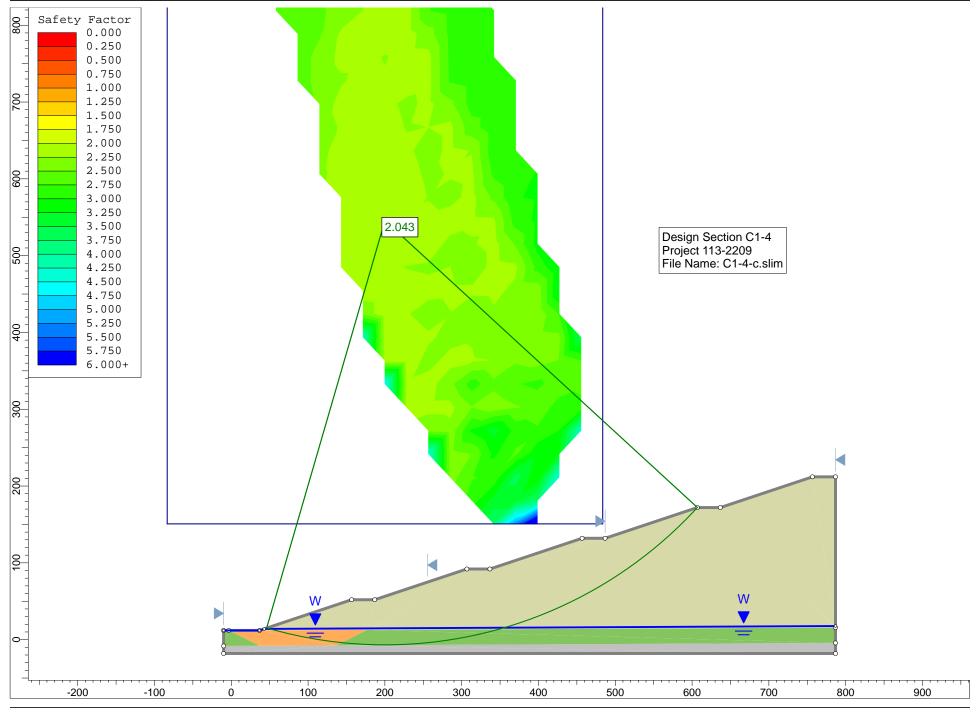





C1-3-c.slim Scale: 1:1500

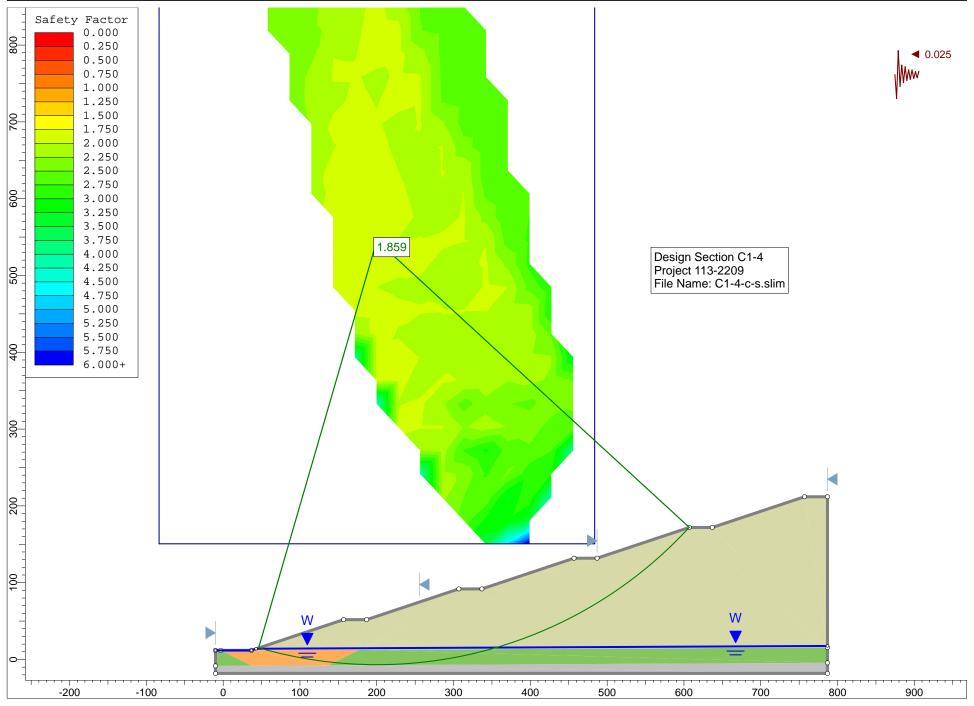





C1-3-nc.slim Scale: 1:1500

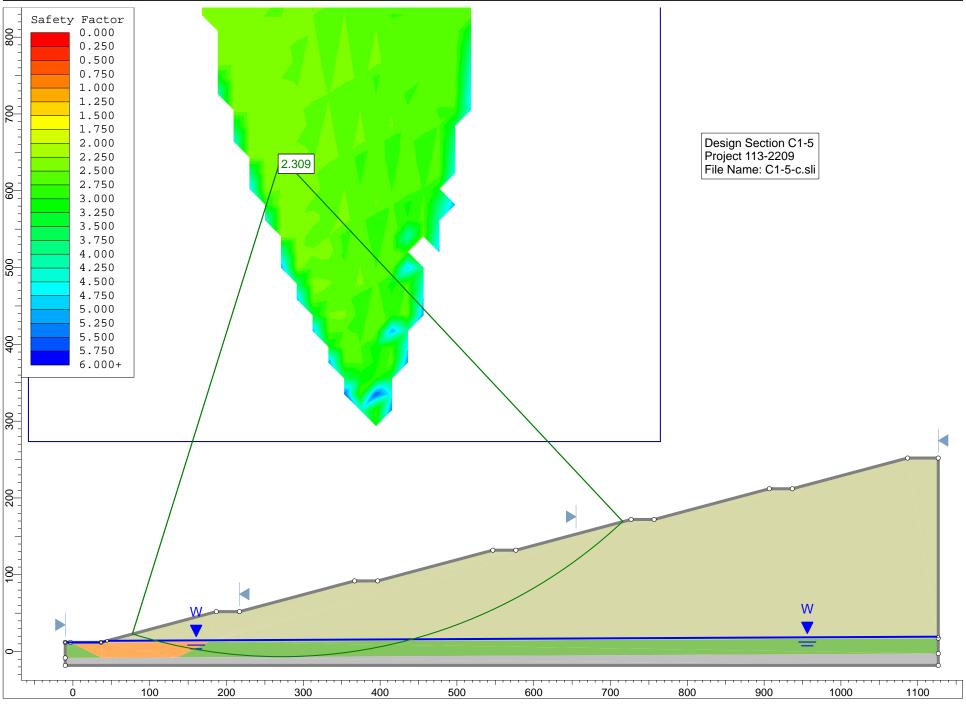





C1-3-c-s.slim Scale: 1:1500

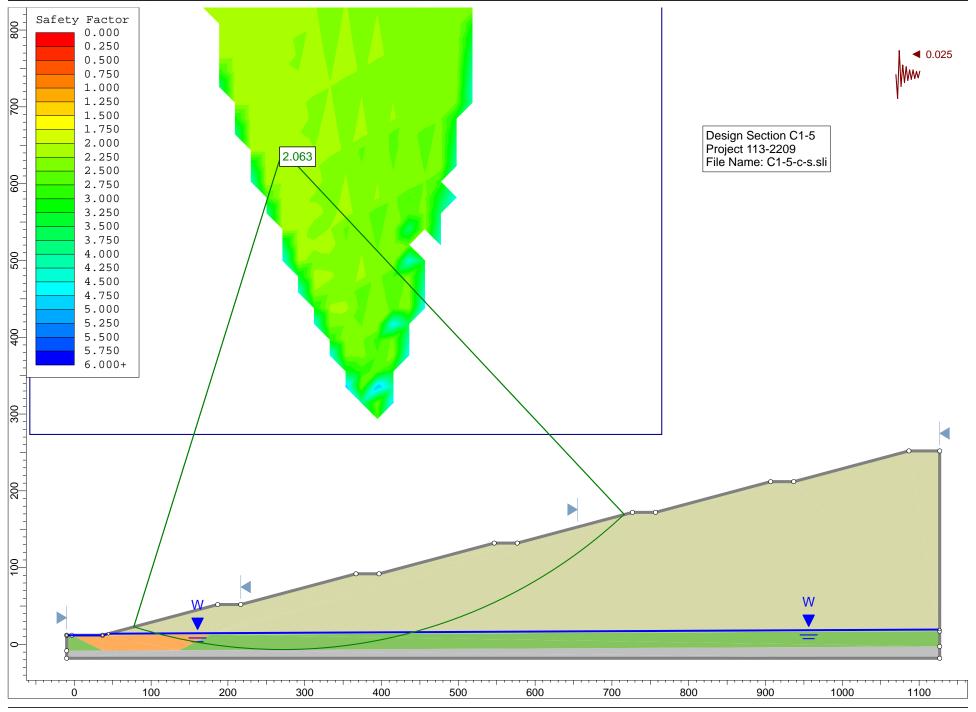




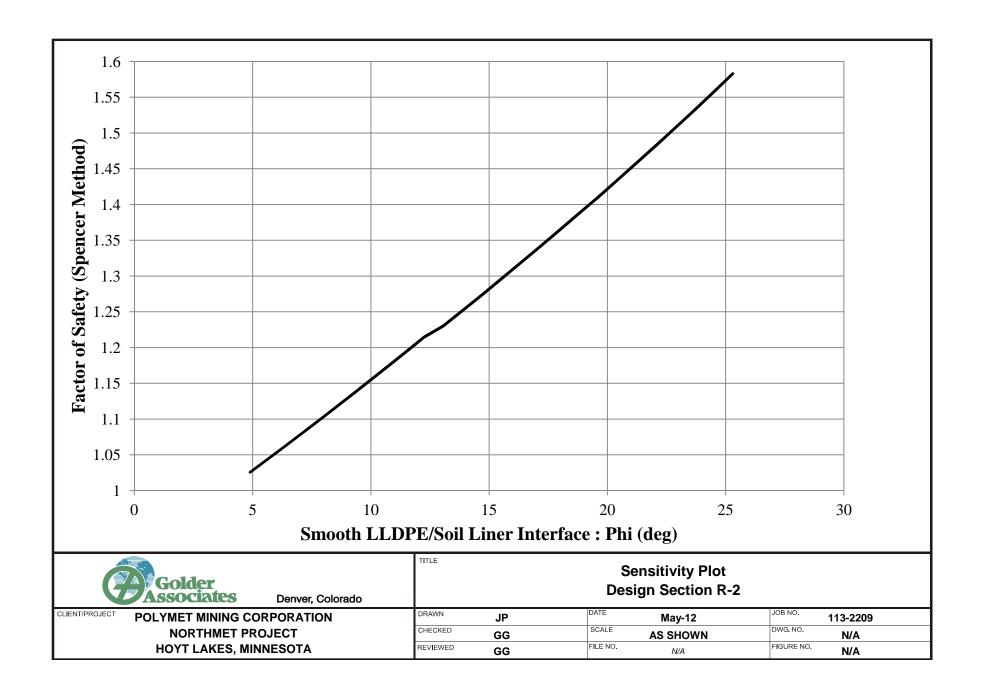

C1-4-c.slim Scale: 1:1500






C1-4-c-s.slim






C1-5-c.slim Scale: 1:1500





C1-5-c-s.slim Scale: 1:1500



# Attachment J

Foundation Settlement and Liner Strain Calculation



# TECHNICAL MEMORANDUM

May 17, 2012 Project No.: 113-2209 Date:

To: Tom Radue and Christie Kearney Company: Barr Engineering Company

From: Gordan Gjerapic Email: ggjerapic@golder.com

cc: Brent Bronson

RE: PRELIMINARY STOCKPILE FOUNDATION SETTLEMENT AND LINER STRAIN

**CALCULATIONS** 

#### 1.0 INTRODUCTION

This document summarizes the approach and results of preliminary foundation settlement and liner strain calculations for the proposed waste rock stockpiles at the PolyMet NorthMet site located near Babbitt, Minnesota. A geotechnical investigation sufficient to support a final design has not yet been completed due to both logistical and regulatory constraints. In particular, no site disturbance required to obtain additional data can occur until the permit to mine is approved. As a result, the analyses included herein are based on assumed properties that will need confirmation based on the results of a Phase II geotechnical investigation.

#### **INPUT PARAMETERS** 2.0

It was assumed that the stockpile foundations will be developed based on the following general sequence:

- 1. Excavate to bedrock within lowland areas, assuming a maximum depth of overexcavation of 20 feet, stockpiling organic soils and till material separately for future use as reclamation soils and structural fill, respectively.
- 2. Fill areas required to meet the foundation grade requirements with the more granular till soils (structural fill)
- Use Category 1 material, if approved by regulatory agencies, in controlled compacted lifts to develop the base grading of the stockpiles.
- 4. Construct the liner system dependent upon the reactivity category of the stockpile.

The minimum grade for foundation underdrains and the leachate collection overliner layer is limited to 0.5 percent. Consequently, the minimum construction liner grade for the stockpile settlement and liner strain calculations has been assumed to be 0.5 percent.

#### 2.1 **Material Properties**

The available information on subsurface soils is insufficient to evaluate the variability of geotechnical conditions at the NorthMet site, especially within the lowland areas. Consequently, compression properties of highland materials (glacial tills) were estimated from laboratory data for a single test pit

J:\11JOBS\113-2209\FROM_GOLDER\FromGolder-05-17-2012\1132209 TM PrelimStockpileFoundCalcs 17MAY12.docx



sample (TP#5, Sample #1, 0.5 to 4 feet) collected during the Phase I geotechnical investigation performed by Golder (2006). The selected compression properties for glacial till material (Figure 1) were assumed to be representative of subsurface soil conditions in the case where no structural fill is required to construct stockpile foundations.

It was assumed that the structural fill materials will exhibit properties similar to medium dense to dense sand, with a constrained modulus of approximately 10,000 pounds per square inch (psi) at an effective stress of 100 psi. The gravimetric moisture content of subgrade materials (glacial till and structural fill) was assumed to be 14 percent.

The following compressibility model was used for settlement calculations:

$$e = A[\sigma' + Z]^B, \tag{1}$$

where e stands for the void ratio,  $\sigma'$  denotes the vertical effective stress, and A, B, and Z are material parameters shown in Table 1. The employed compressibility model inherently assumes that all unsuitable materials (e.g., peat, organic soils, clays, etc.) in lowland areas are excavated and replaced with structural fill.

Table 1 Estimated Material Parameters

Material	Units	Α	В	Z
Glacial till	(kPa)	1.0277	-0.1113	66.73
	(psf)	1.4414	-0.1113	1393.3
	(psi)	0.8289	-0.1113	9.679
Structural fill	(kPa)	0.4471	-0.0271	57.24
	(psf)	0.4854	-0.0271	1195.1
	(psi)	0.4243	-0.0271	8.3021

Compression curves developed for glacial till and structural fill materials used in the settlement calculations are shown in Figures 1 and 2.

## 2.2 Geometry and Loading Conditions

The thicknesses of subgrade materials (glacial till or structural fill) were estimated as a difference between the proposed liner grades and the estimated bedrock elevations. Surface loading was calculated based on the stockpile configurations at Year 20, assuming a waste rock dry density of 1.7 tons per cubic yard (t/yd³) and a gravimetric moisture content of 8 percent.



## 2.3 Initial Conditions

The groundwater table was assumed to coincide with the bedrock surface during stockpile construction, i.e., it was assumed that the site is de-watered prior to fill placement. Pre-loading of subgrade materials was assumed to be equal to 10 psi due to construction equipment used for subgrade preparation.

### 3.0 CALCULATIONS

## 3.1 Foundation Settlements

Settlement calculations were based on determining the subgrade thickness prior to and after loading with the waste rock material. The height of the one-dimensional subgrade column (*H*) was calculated as follows:

$$H = H_{s} + \frac{e(0)[\sigma'(0) + Z] - e(H_{s})[\sigma'(H_{s}) + Z]}{(1+B)\gamma_{w} G_{s} (1+w)},$$
(2)

where w is the gravimetric moisture content,  $H_s$  is the height of solids, e(0) and  $\sigma'(0)$  denote the void ratio and the effective stress at the base of the soil column, and  $e(H_s)$  and  $\sigma'(H_s)$  are the void ratio and the effective stress at the surface. The effective stress applied to the surface was set to 10 psi for the soil column prior to placement of the waste rock in order to account for equipment loading during construction. The effective stress at the surface of the soil column after placement of waste rock with a defined thickness,  $H_{WR}$ , was calculated as follows:

$$\sigma'(H_s) = H_{WR} \gamma_{WR} , \qquad (3)$$

where  $Y_{WR}$  is the waste rock density (assumed as 136 pounds per cubic foot (pcf)). The effective stress at the base of the soil column was calculated as follows:

$$\sigma'(0) = \gamma_w G_s(1+w)H_s + \sigma'(H_s), \tag{4}$$

where  $Y_w$  is the density of water and  $G_s$  denotes the specific gravity of subgrade soils (assumed to be equal to 2.8). For a one-dimensional soil column, the height of solids,  $H_s$ , was calculated from Equation 2 with the column height,  $H_s$ , equal to the difference between the proposed liner grades and the corresponding estimated bedrock elevation.

### 3.2 Liner Strain

Foundation settlement calculations were determined using the grid spacing L. Using the maximum calculated settlement,  $\delta$ , the maximum liner strain was conservatively estimated as follows:



$$\varepsilon = \frac{\sqrt{L^2 + \delta^2} - L}{L} = \sqrt{1 + \frac{\delta^2}{L^2}} - 1 \approx \frac{1}{2} \frac{\delta^2}{L^2}$$
(5)

### 4.0 RESULTS

The minimum initial liner grade employed for stockpile foundation construction is 0.5 percent according to project design criteria. Figures 4.1, 5.1, and 6.1 display the initial liner grades for the Category 2/3 Stockpile, Category 4 Stockpile, and Lean Ore Surge Pile, respectively. Figures 4.2, 5.2, and 6.2 display the calculated final liner grades based on the assumption that all subgrade materials are uniform and can be described using the properties for glacial till listed in Table 1. The change in liner grades between initial and final liner grades (e.g., between liner grades in Figures 4.1 and 4.2) is due to stresses exerted by the waste rock placement through the end of year 20. Critical reductions in liner grades (final post-settlement liner grades shallower than 0.2 percent) were not found.

Figures 4.3, 5.3, and 6.3 display the calculated final liner grades assuming structural fill as the subgrade soil material (rather than glacial till), with no compressible soils at depth. Assuming that the structural fill behaves as a moderately stiff to dense sand with the compression properties displayed in Figure 2, liner grades are likely to remain within tolerable limits.

The maximum foundation settlements and liner strains are shown in Tables 2 through 4.

Table 2 Maximum Settlements and Strains for Category 2/3 Stockpile

	Maximum Settlement	Maximum Strain	
Subgrade	(ft)	(%)	
Glacial till	1.24	0.03	
Structural fill	0.25	<0.01	

Table 3 Maximum Settlements and Strains for Category 4 Stockpile

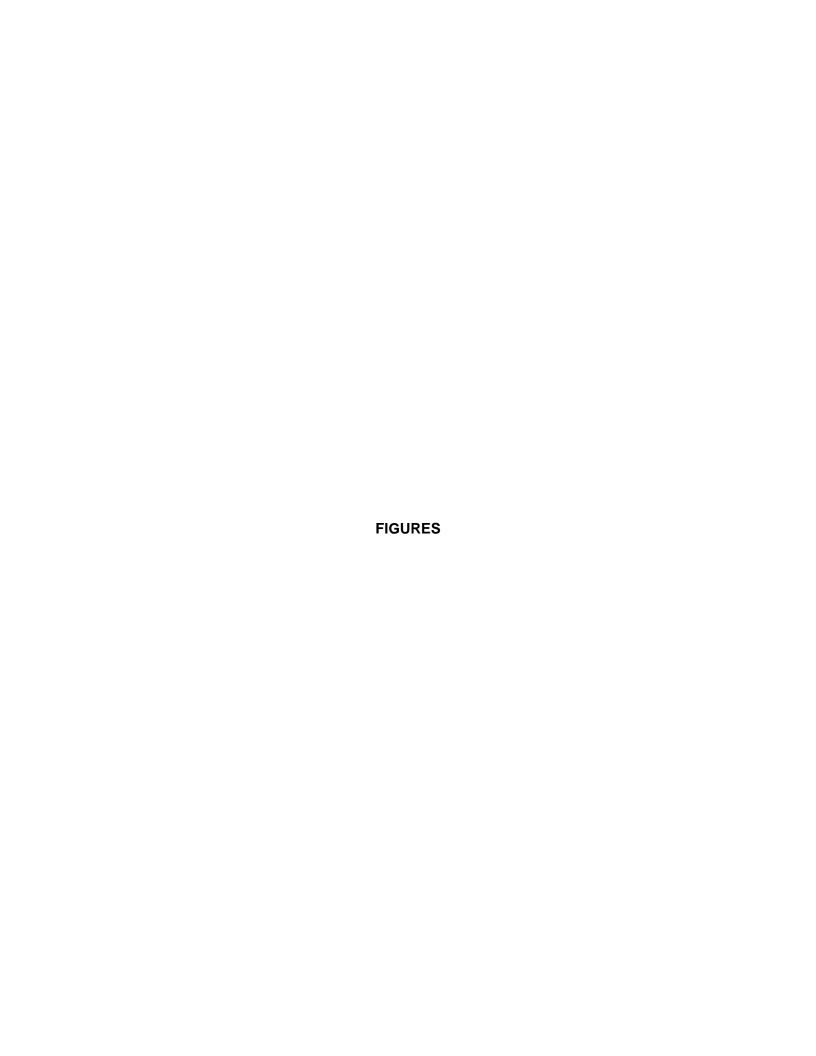
Subgrade	Maximum Settlement (ft)	Maximum Strain (%)	
Glacial till	0.64	<0.01	
Structural fill	0.13	<0.01	

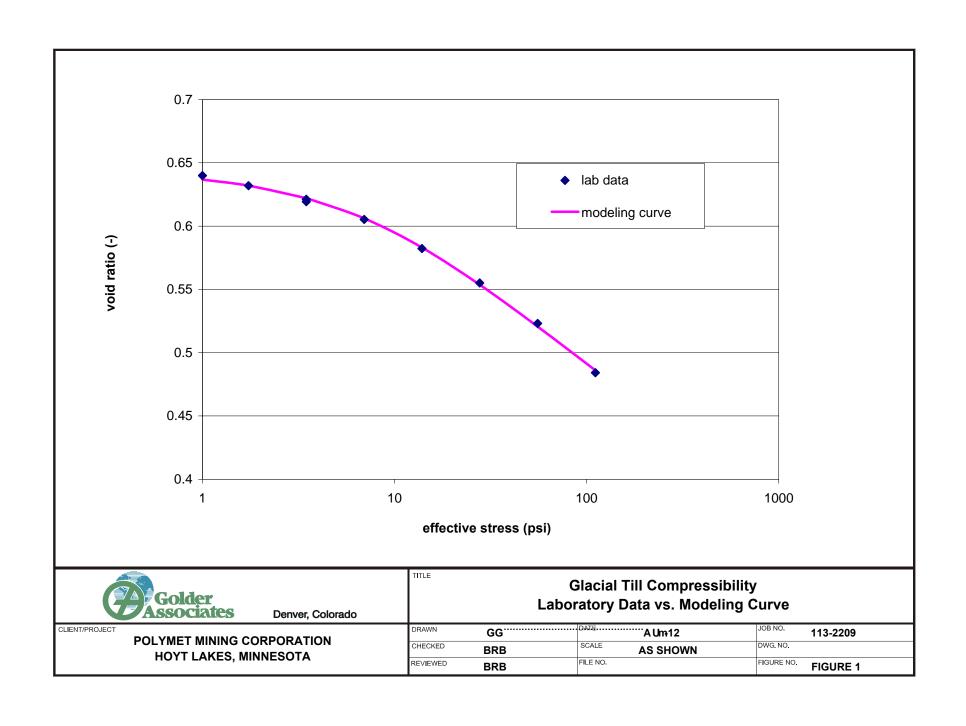
Table 4 Maximum Settlements and Strains for Lean Ore Surge Stockpile

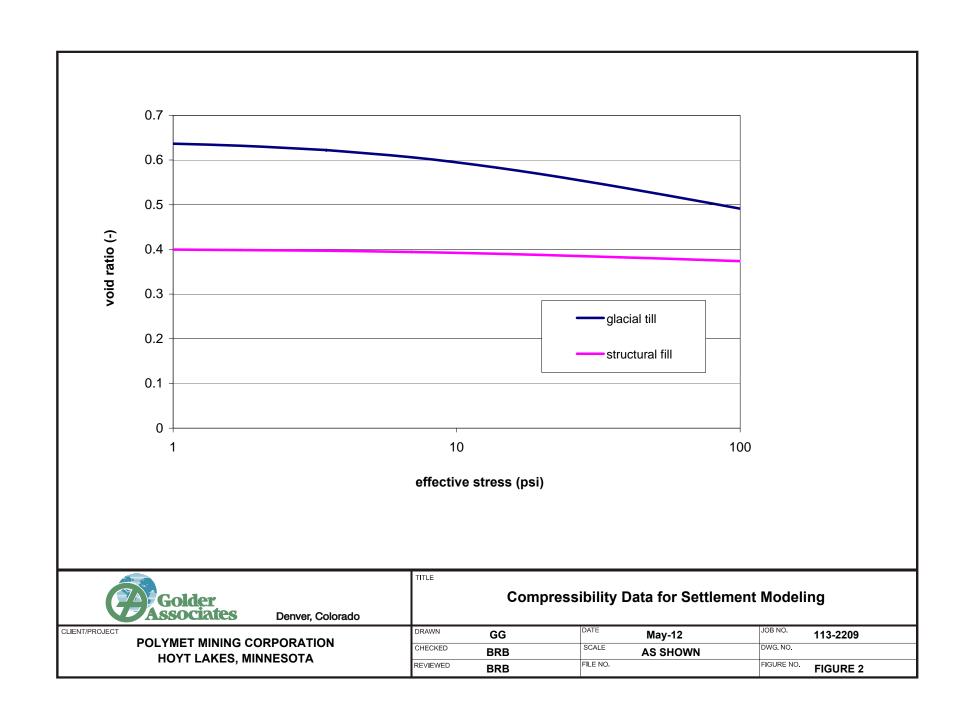
Subgrade	Maximum Settlement (ft)	Maximum Strain (%)	
Glacial till	0.36	<0.01	
Structural fill	0.07	<0.01	

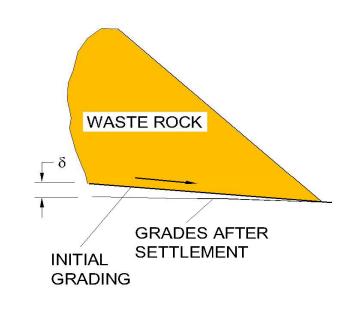
Large strains from foundation consolidation are not anticipated at the NorthMet stockpiles as the highland foundation soils are believed to be dominantly composed of relatively low-compressibility glacial moraine, colluvium, and weathered bedrock, which are not expected to experience large settlements. Engineered




fills have also been designed to minimize the potential for settlement in lowland areas that have yet to be characterized. Note that the main reason that a linear low-density polyethylene (LLDPE) liner system was selected over a high-density polyethylene (HDPE) system is because of its greater flexibility and significantly more favorable biaxial stress-strain properties, which can accommodate unexpected foundation settlements. The documented allowable biaxial strain for LLDPE is in excess of 30 percent, while HDPE will only strain uniaxially to only 12 to 17 percent before yield failure occurs. Conservatively assuming a maximum strain for the LLDPE liner systems of 30 percent and the maximum predicted settlement strain from glacial till of 0.03 percent, the factor of safety against liner rupture resulting from settlement is approximately 1000.


## 5.0 CONCLUSIONS


Waste rock loading may increase or decrease the slope gradients as illustrated in Figure 3 (potentially even resulting in depressions or negative gradients depending upon the actual site conditions). For example, loading Case A in Figure 3 depicts liner grade reduction caused by decreasing waste rock height in the direction of decreasing liner elevations. Similarly, the loading Case B in Figure 3 depicts steepening of the liner grades caused by increasing waste rock height in the direction of decreasing liner elevations. This trend of liner grade reduction/increase may be exacerbated if the subgrade soil thickness increases in the same direction as the waste rock height.


Settlement calculations indicate that subgrade soils with the compression index below approximately 0.1 are likely to perform favorably under the assumed loading conditions.











WASTE ROCK

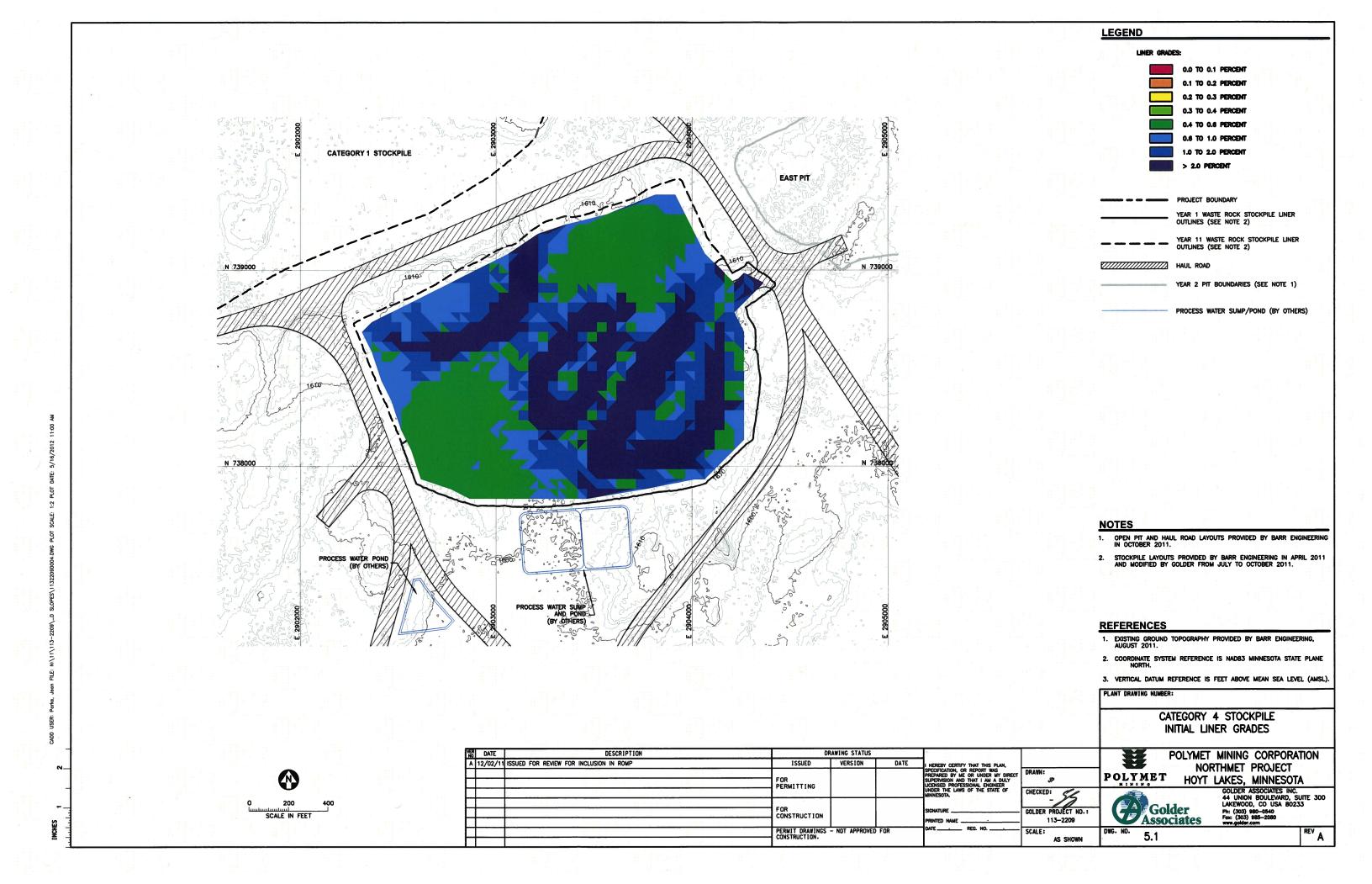
INITIAL
GRADES AFTER GRADING
SETTLEMENT

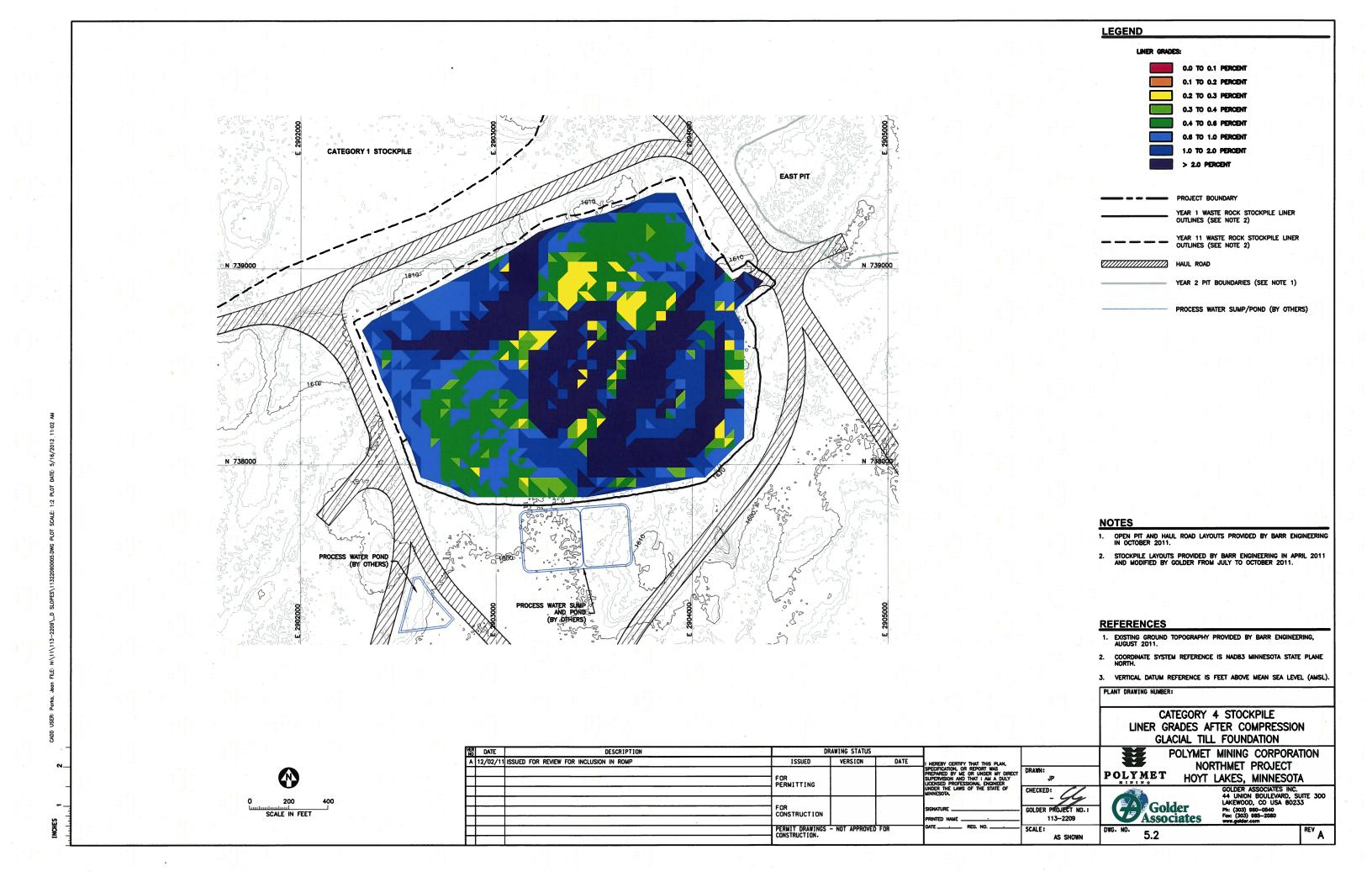
LOADING CASE A: WASTE ROCK HEIGHT INCREASES W/ INCREASING LINER ELEVATIONS LOADING CASE B: WASTE ROCK HEIGHT INCREASES W/ DECREASING LINER ELEVATIONS

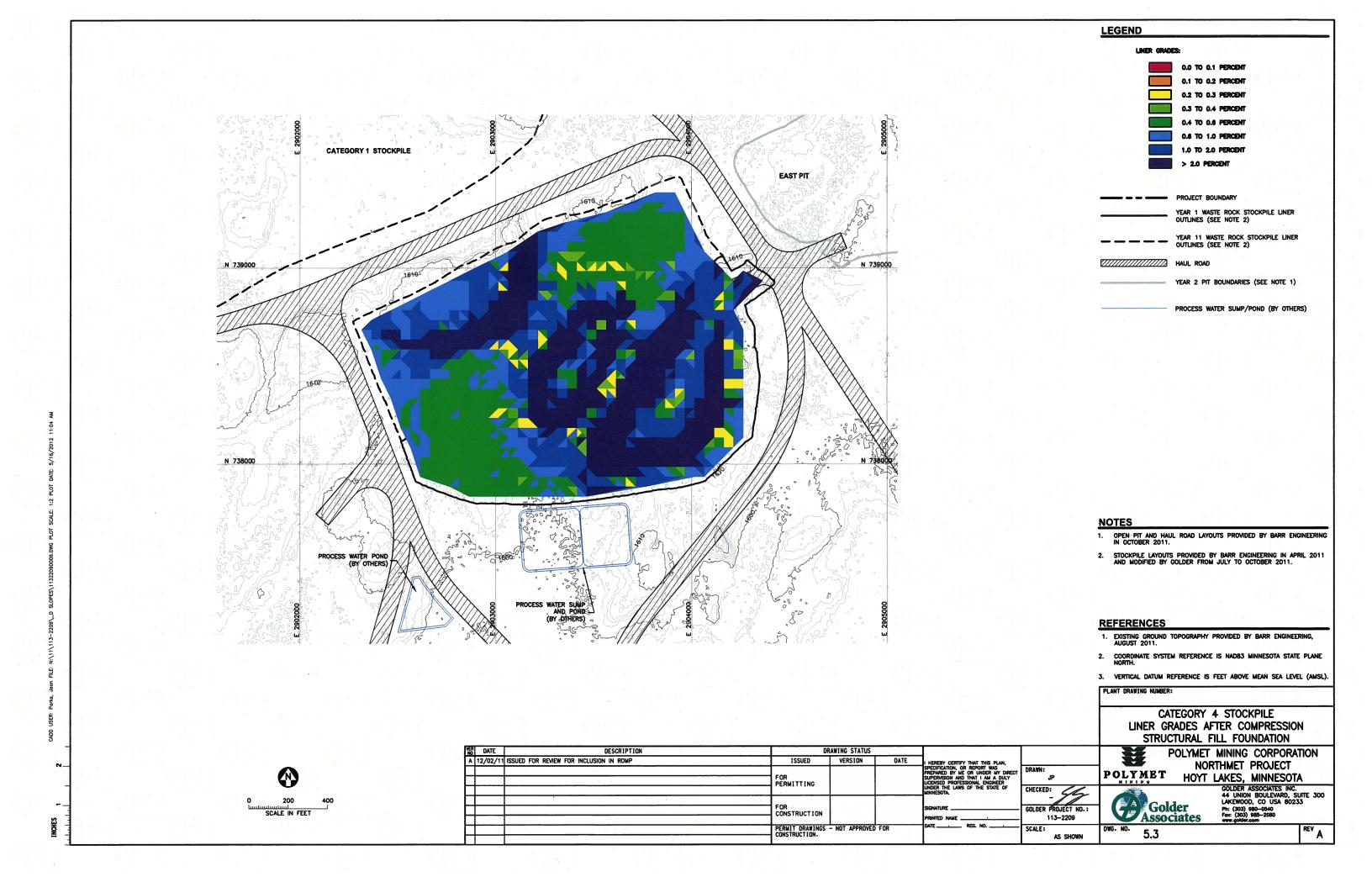


Denver, Colorado

TITLE


**Liner Grade Changes Due to Waste Rock Loading** 


CLIENT/PROJECT


POLYMET MINING CORPORATION HOYT LAKES, MINNESOTA

DRAWN	GG	DATE	May-12	JOB NO.	113-2209
CHECKED	BRB	SCALE	AS SHOWN	DWG. NO.	
REVIEWED	BRB	FILE NO.		FIGURE NO.	FIGURE 3

CADD USER: Parks, Jean FILE: N:\11\113-2209_D SLOPES\11322090007.DWG PLOT SCALE: 1:2 PLOT DATE: 5/16/2012 11:08







LEGEND

CADD USER: Parks, Jean FILE: N:\11\113-2209_D SLOPES\11322090001.DWG PLOT SCALE: 1:2 PLOT DATE: 5/16/2012 10:52 AM

**LEGEND** 

CADD USER: Parks, Jean FILE: N:\11\113-2209_D SLOPES\11322090002.0WG PLOT SCALE: 1:2 PLOT DATE: 5/16/2012 10:

LEGEND

# Attachment K

Liner Survivability Evaluation

## APPENDIX K

# GEOMEMBRANE LINER SURVIVABILITY

Golder Associates Inc. (Golder) has prepared this appendix presenting results of liner load testing conducted for other high stress applications demonstrating the survivability of 80 mil linear low density polyethylene (LLDPE) geomembrane, as proposed for use as the primary liner for waste rock stockpiles containing Categories 2, 3, and 4 waste rock at PolyMet's NorthMet Project. Confirmatory laboratory testing will need to be conducted for the proposed liner system once actual construction materials (i.e., drainage gravel, soil liner, and subgrade soils) become available to facilitate the testing.

### BACKGROUND

The liner system designs for the NorthMet Project incorporate a risk-based approach depending on the reactivity category of the waste rock. Use of geomembrane liner, specifically 80 mil LLDPE, is proposed for use at the following facilities:

- Category 2/3 Waste Rock Stockpile: A compacted subgrade (i.e., soil liner 3) overlain by an 80 mil LLDPE geomembrane liner and an overliner drainage layer. The upper one foot of the prepared subgrade shall have a maximum permeability of 1x10⁻⁵ centimeters per second (cm/s).
- Category 4 Waste Rock Stockpile and Ore Surge
  Pile: A minimum of one foot of compacted soil liner 2 with a maximum
  permeability of 1x10⁻⁶ cm/s overlain by an 80 mil LLDPE geomembrane liner
  and an overliner drainage layer.

Per the project design criteria, the maximum depth over liner for Category 2, 3, and 4 waste rock is 200 feet. The average dry density of waste rock is 1.7 tons per cubic yard, which corresponds to a maximum stress applied at the liner by overlying waste rock of approximately 175 pounds per square inch (psi).

The geomembrane liner will be overlain by a drainage layer comprised of a minimum of 2 feet of minus one and one-quarter inch (-1  $\frac{1}{4}$  in) crushed rock or native gravelly materials. At this time, it is anticipated that the drainage layer will have a minimum permeability of  $1x10^{-2}$  cm/s under the anticipated design loading conditions. Once drainage material meeting the project specifications becomes available for laboratory testing (anticipated during the Phase II investigation), confirmatory testing will need to include consolidation-permeability testing of the overliner materials.

# **OBJECTIVE**

The purpose of a liner load testing program is to evaluate the site-specific survivability of various liner systems under anticipated loading conditions. Further, the purpose of liner load testing is to demonstrate that the proposed liner system can maintain hydraulic containment even with waste rock depths that are greater than the designed ultimate height of the proposed facilities.

In the absence of actual liner load tests conducted for this project, Golder has prepared a compilation of liner load test results from other projects which utilize a similar liner system design as that

# GEOMEMBRANE LINER SURVIVABILITY

Golder Associates Inc. (Golder) has prepared this appendix presenting results of liner load testing conducted for other high stress applications demonstrating the survivability of 80 mil linear low density polyethylene (LLDPE) geomembrane, as proposed for use as the primary liner for waste rock stockpiles containing Categories 2, 3, and 4 waste rock at PolyMet's NorthMet Project. Confirmatory laboratory testing will need to be conducted for the proposed liner system once actual construction materials (i.e., drainage gravel, soil liner, and subgrade soils) become available to facilitate the testing.

### BACKGROUND

The liner system designs for the NorthMet Project incorporate a risk-based approach depending on the reactivity category of the waste rock. Use of geomembrane liner, specifically 80 mil LLDPE, is proposed for use at the following facilities:

- Category 2/3 Waste Rock Stockpile: A compacted subgrade (i.e., soil liner 3) overlain by an 80 mil LLDPE geomembrane liner and an overliner drainage layer. The upper one foot of the prepared subgrade shall have a maximum permeability of 1x10⁻⁵ centimeters per second (cm/s).
- Category 4 Waste Rock Stockpile and Ore Surge
  Pile: A minimum of one foot of compacted soil liner 2 with a maximum
  permeability of 1x10⁻⁶ cm/s overlain by an 80 mil LLDPE geomembrane liner
  and an overliner drainage layer.

Per the project design criteria, the maximum depth over liner for Category 2, 3, and 4 waste rock is 200 feet. The average dry density of waste rock is 1.7 tons per cubic yard, which corresponds to a maximum stress applied at the liner by overlying waste rock of approximately 175 pounds per square inch (psi).

The geomembrane liner will be overlain by a drainage layer comprised of a minimum of 2 feet of minus one and one-quarter inch (-1  $\frac{1}{4}$  in) crushed rock or native gravelly materials. At this time, it is anticipated that the drainage layer will have a minimum permeability of  $1x10^{-2}$  cm/s under the anticipated design loading conditions. Once drainage material meeting the project specifications becomes available for laboratory testing (anticipated during the Phase II investigation), confirmatory testing will need to include consolidation-permeability testing of the overliner materials.

# **OBJECTIVE**

The purpose of a liner load testing program is to evaluate the site-specific survivability of various liner systems under anticipated loading conditions. Further, the purpose of liner load testing is to demonstrate that the proposed liner system can maintain hydraulic containment even with waste rock depths that are greater than the designed ultimate height of the proposed facilities.

In the absence of actual liner load tests conducted for this project, Golder has prepared a compilation of liner load test results from other projects which utilize a similar liner system design as that

# APPENDIX K GEOMEMBRANE LINER SURVIVABILITY

September 2008 2 083-2209

proposed for the NorthMet Project. In general, the stresses tested to were greater than those anticipated for the NorthMet Project.

# TEST RESULTS

Table K-1 provides a compilation of liner load test characteristics and results from several projects from Golder's database which utilized LLDPE geomembrane for high stress applications. The project names have been removed to provide anonymity.

Appendices K-1 through K-3 of this Appendix provide test summaries and photos from the liner load tests discussed in Table K-1. In general, the LLDPE geomembrane liners in the above tests exhibited minor indentations and scratches, but did not show any signs of failure or puncture under visual observation, nor were pinhole leaks detected during vacuum testing. Therefore, the use of 80 mil LLDPE geomembrane as proposed for the NorthMet Project is expected to perform well. It should be noted that the anticipated loading conditions for the NorthMet Project are generally less than those in the presented test work.

# **FUTURE TEST WORK**

As part of the Phase II geotechnical investigation program in support of design work for the NorthMet Project, specifically design of the liner system and overliner drainage network, the following confirmatory laboratory testing is required using the site specific materials specified for construction:

- Consolidation/permeability testing of overliner drainage materials to confirm permeability of the material under the design loading conditions, as well as the ability of the material to resist crushing under load;
- Liner load testing of the proposed liner systems with the specified overliner and underliner materials to confirm survivability of the proposed geomembrane liner under the anticipated design loading conditions; and
- Interface shear testing of the proposed liner systems to evaluate the strength characteristics of the liner system for use in stability evaluations.

In order to facilitate current design work for the NorthMet Project, necessary design parameters have been assumed for use in the analyses based on Golder's recent experience with design of similar facilities.

September 2008 3 083-2209

# **TABLE K-1**

# LINER LOAD TEST CONDITIONS AND RESULTS FROM HIGH STRESS APPLICATIONS

Project		Liner System		Load	Test Results
	Underliner	Geomembrane Liner	Overliner	Applied (psi)	
Project 1 (4 tests)	Clayey gravel with sand (GC)	Single-sided textured 80 mil LLDPE	2-inch minus overliner	450	PASS (Appendices K-1-1)
	Clayey sand with gravel (SC)	Single-sided textured 80 mil LLDPE	2-inch minus overliner	450	PASS (Appendices K-1-2 and K-1-3)
	Clayey gravel with sand (GC)	Single-sided textured 80 mil LLDPE	1-1/2-inch minus overliner	850	PASS (Appendix K-1-4)
Project 2 (3 tests)	Lean clay (CL)	Smooth 80 mil LLDPE	1-1/4-inch minus overliner (GP) (3 different sources)	175	PASS (Appendices K-2-1, K- 2-2, and K-2-3)
Project 3 (5 tests)	Clayey gravel (GC)	Smooth 80 mil LLDPE	1-1/2-inch minus overliner	350	PASS (Appendix K-3)
	Clayey gravel (GC)	Smooth 60 mil LLDPE	1-1/2-inch minus overliner	350	
	1-1/2-inch minus gravel	Smooth 80 mil LLDPE	1-1/2-inch minus overliner	350	
	Clayey gravel (GC)	Smooth 80 mil LLDPE	1-1/2-inch minus overliner	350	
	1-1/2-inch minus gravel	Smooth 100 mil LLDPE	1-1/2-inch minus overliner	350	

# APPENDIX K-1 PROJECT #1 LINER LOAD TESTING

K-1-1

## **GEOMEMBRANE LINER LOAD TEST SUMMARY**

<b>JOB NAME:</b>	PROJECT	#1		
JOB NUMBER:	NA		BORING NUMBER	R
DATE:	2/12/2003		SAMPLE NUMBER	R Liner Load Test
			DEPTH (f	<u></u>
Underliner (Beddi	ing) Source:			
Underliner Classific	cation:	Clayey gravel with sand GC		Atterberg Limits: 33, 15, 18
Maximum Dry Den	sity (pcf):	118.8		Optimum Moisture: 13.5
Overliner Materia	al Source:	Site Supplied		
Overliner Classifica	ation:	-2" gravel		Atterberg Limits:
Dry Density (pcf):		90.3		
Geosynthetic Manufacturer/Sup	oplier:	Site supplied		

	Thickness	Duration of		Moisture %	Load Applied (psi)	Change in total sample height	<b>Test Results</b>	
	(mls)	Test (hrs.)				(in)	Visual	Vacuum
LLDPE Single-								
sided textured	81.00	24	95	10.25	450	1.262	pass	pass

General Test Notes: Test was conducted using a 10" diameter cell. The liner was placed on top of 4.0 inches of

bedding soil, then covered with 6.3 inches of overliner material. Approximately 10

rocks were hand placed directly on the liner prior to placement of remaining overliner material.

A hydraulic jack was used to apply a load of 450 psi to the sample at 50 psi increments.

The load was maintained for 24 hours. Dial gages were used to monitor deformation of the sample.

At the conclusion of the test, the liner was inspected and tested for punctures both visually

and by application of a vacuum. The vacuum pressure was 70 mmHG.

Liner observations: No severe damage. No punctures. One deep dimple noted.

Numerous small dimples and scratches.

Clay liner was remolded to 95% of maximum dry density and -3% of optimum moisture.

3% bentonite was added to the clay underliner.

Overliner was poured into cell in 4 lifts. It was not compacted between lifts.


 Date:
 2/12/03

 Tech:
 NG

Review: MB

# **Liner Load Testing Photo Log**















K-1-2

## GEOMEMBRANE LINER LOAD TEST SUMMARY

JOB NAME: PROJECT #1		<del>†</del> 1		
JOB NUMBER:	NA		BORING NUMBER	
DATE:	12/31/2002		SAMPLE NUMBER	Liner Load Test
			DEPTH (ft)	
Underliner (Bedd	ing) Source:			
Underliner Classifi	ication:	Clayey sand with gravel (SC)		Atterberg Limits: 41, 15, 26
Maximum Dry Der	nsity (pcf):	115.3 (rock corrected)	Op	timum Moisture: 12.9
Overliner Materia	al Source:	Site supplied		
Overliner Classific	ation:	-2.0" gravel		Atterberg Limits:
Dry Density (pcf):		90.0		
Geosynthetic				
Manufacturer/Sup	pplier:	Site supplied		

Liner Type	Ave. Liner Thickness	Duration of Underliner	Moisture	Load Applied	Change in total sample	<b>Test Results</b>		
	(mls)	Test (hrs.)	Compaction %	%	(psi)	height (in)	Visual	Vacuum
LLDPE Single-								
sided textured	81.3	24	95	9.9	450	1.540	PASS	PASS

General Test Notes:

Test was conducted using a 10" diameter cell. The liner was placed on top of 4.0 inches of bedding soil, then covered with approximately 6.5 inches of overliner material. Approximately 10 rocks were hand placed directly on the liner prior to placement of remaining overliner material. A hydraulic jack was used to apply a load of 450 psi to the sample. The load was maintained for 24 hours. Dial gages were used to monitor deformation of the sample.

At the conclusion of the test the liner was inspected and tested for punctures both visually and by application of a vacuum. The vacuum pressure was 70 mmHG.

Liner observations: No severe damage. No punctures. One deep dimple noted. Numerous small dimples and scratches.

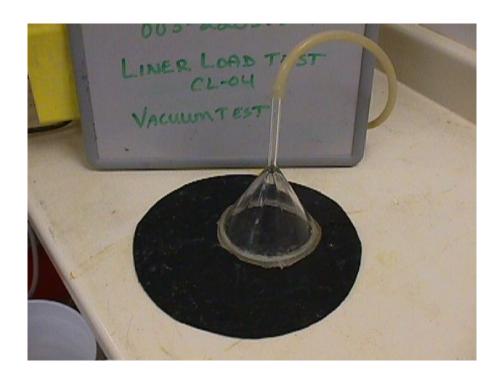
Clay liner was remolded to 95% of maximum dry density and -3% of optimum moisture.

Overliner was poured into cell in 4 lifts. It was not compacted between lifts.

**Date:** 12/31/02 **Tech:** NG

# **Liner Load Testing Photo Log**
















K-1-3

## **GEOMEMBRANE LINER LOAD TEST SUMMARY**

<b>JOB NAME:</b>	PROJECT	#1			
JOB NUMBER:			BORING NUMBER	·	
DATE:	2/23/2003		SAMPLE NUMBER	Liner Load Test	
			DEPTH (ft)	·	
Underliner (Beddi	ing) Source:				
Underliner Classifi	cation:	Clayey sand with gravel SC		Atterberg Limits: 31,14,17	
Maximum Dry Der	nsity (pcf):	122.2	Op	otimum Moisture: 11.5	
Overliner Materia	al Source:	Site Supplied			
Overliner Classifica	ation:	-2" gravel		Atterberg Limits:	
Dry Density (pcf):		87.5			
Geosynthetic Manufacturer/Sup	pplier:	Site supplied			

	Ave. Liner Thickness	Duration of	Underliner	Moisture	Load	Change in total sample height	<b>Test Results</b>	
	(mls)	Test (hrs.)	Compaction %	%	Applied (psi)	(in)	Visual	Vacuum
LLDPE Single-								
sided textured	80.83	48	95	9.92	450	1.378	pass	pass

General Test Notes: Test was conducted using a 10" diameter cell. The liner was placed on top of 4.0 inches of

bedding soil, then covered with 5.0 inches of overliner material. Approximately 10

rocks were hand placed directly on the liner prior to placement of remaining overliner material.

A hydraulic jack was used to apply a load of 450 psi to the sample at 50 psi increments.

The load was maintained for 48 hours. Dial gages were used to monitor deformation of the sample.

At the conclusion of the test, the liner was inspected and tested for punctures both visually

and by application of a vacuum. The vacuum pressure was 70 mmHG.

Liner observations: No severe damage. No punctures. Two deep dimples noted.

Numerous small dimples and scratches.

Clay liner was remolded to 95% of maximum dry density and -3% of optimum moisture.

3% bentonite was added to the clay underliner.

Overliner was poured into cell in 4 lifts. It was not compacted between lifts.

*Date:* 2/23/03 *Tech:* NG

Review: MB

# **Liner Load Testing Photo Log**















K-1-4

## **GEOMEMBRANE LINER LOAD TEST SUMMARY**

JOB NAME:	PROJECT	#1		
JOB NUMBER:	-		BORING NUMBER	<u> </u>
DATE:	4/12/2004		SAMPLE NUMBER	80 mil SST LLDPE Liner
			DEPTH (ft)	)
Underliner (Beddi	ing) Source:	Site supplied		
Underliner Classific	cation:	GC		Atterberg Limits: LL=39, PL=20, PI=19
Maximum Dry Den	sity (pcf):	114.6	OĮ	otimum Moisture: 13.1
Overliner Materia	al Source:	Site supplied		
Overliner Classifica	ation:			Atterberg Limits:
Dry Density (pcf):		77.4		
Geosynthetic Manufacturer/Sup	oplier:	Site supplied		

Liner Type	Ave. Liner Thickness (mls)	Duration of Test (hrs.)	Underliner Compaction %	Moisture %	Load Applied (psi)	Change in total sample height (in)	Test I Visual	Results Vacuum
80 mil								
Smooth/Textured	83.50	53	96.6	12.0	850	3.410	Pass	Pass

General Test Notes:

Test was conducted using a 12" diameter cell. The liner was placed on top of 4.0 inches of soil liner material, then covered with approximately 9.4 inches of overliner material. Approximately 10-rocks were hand placed directly on the liner prior to placement of remaining overliner material. A hydraulic jack was used to apply a load of 850 psi to the sample over a period of 53 hours. The load was maintained for 28 hours. A dial gage was used to monitor deformation of the sample. At the conclusion of the test the liner was inspected and tested for punctures both visually and by application of a vacuum. The vacuum pressure was 70 mmHG.

Liner observations: No severe damage. No punctures.

Numerous small dimples and scratches.

Clay liner was remolded to 96.6% of maximum dry density and 1.1% of optimum moisture.

Overliner was placed into cell in 4 lifts. It was not compacted between lifts.

 Date:
 4/13/04

 Tech:
 JR

 Review:
 MB

# APPENDIX K-2 PROJECT #2 LINER LOAD TESTING

K-2-1

#### **GEOMEMBRANE LINER LOAD TEST SUMMARY**

JOB NAME:	PROJECT	#2	
JOB NUMBER	<b>:</b>		
DATE:	4/25/2006		
Underliner (Bed	dding) Source:	Soil Liner	
Underliner Classification:		CL	Atterberg Limits: LL-33, PL-23, PI-10
Maximum Dry Density (pcf):		97.9	Optimum Moisture: 23.7
Overliner Mate	rial Source:	Ore	
Overliner Classif	fication:	GP	Atterberg Limits:
Dry Density (pcf):		103.2	
Geosynthetic		995	
Manufacturer/S	Supplier:	GSE	

Liner Type	Ave. Liner Thickness (mls)	Duration of Test (hrs.)	Underliner Compaction %	Moisture %	Load Applied (psi)	Change in total sample height	<b>Test Results</b>	
						(in)	Visual	Vacuum
LLDPE S/S	80.93	24	95	23.3	175	0.833	PASS	PASS

General Test Notes: Test was conducted using a 10" diameter cell. The 80 mil smooth/smooth LLDPE liner was placed on top of 4.0 inches of underliner soil, then covered with approximately 6.9 inches of overliner material. Per specifications, two 1/2" rock protrusions were placed in the underliner soil. Approximately 3 rocks were hand placed with points downward on the liner prior to placement of remaining overliner material. A hydraulic jack was used to apply a load of 175 psi to the sample over a period of 17.3 hours. The load was maintained for 24 hours. Dial gages were used to monitor deformation of the sample. At the conclusion of the test, the liner was inspected and tested for punctures both visually and by application of a vacuum. The vacuum pressure was approximately 450 mmHG.

Liner observations: No punctures were present but several dimples and scratches.

Underliner was remolded to 95.7% of maximum dry density at optimum moisture. Overliner was loosely placed and slightly tamped.

> Date: 4/26/06 Tech: RT Review: MB

### **Liner Load Testing Photo Log**

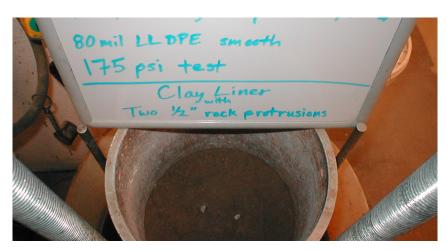



Figure 1 – Clay liner with rock protrusions, pre-test.

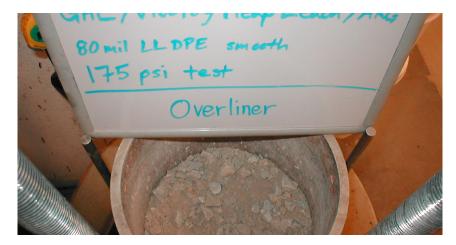



Figure 2 - Ore, post-test.



Figure 3 – 2.0 mm LLDPE, post-test.

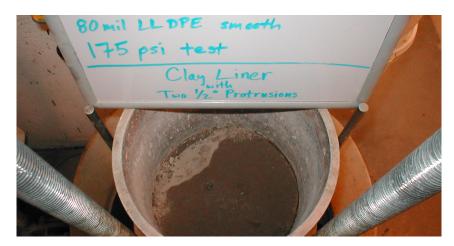



Figure 4 – Clay liner, post-test.



Figure  $5-2.0\ mm$  LLDPE, visual inspection.

K-2-2

#### **GEOMEMBRANE LINER LOAD TEST SUMMARY**

JOB NAME:	PROJECT	Ŧ2	
JOB NUMBER:			
DATE:	7/5/2006		
Underliner (Beddin	ng) Source:	Soil Liner	
Underliner Classification:		CL	Atterberg Limits: LL-33, PL-23, PI-10
Maximum Dry Density (pcf):		97.9	Optimum Moisture: 23.7
Overliner Material		Bolsa #1	
Overliner Classification:		GP	Atterberg Limits:
Dry Density (pcf):		98.2	
Geosynthetic Manufacturer/Sup	plier:	GSE	

Liner Type	Ave. Liner Thickness (mls)	Duration of Test (hrs.)	Underliner Compaction %	Moisture %	Load Applied (psi)	Change in total sample height	<b>Test Results</b>	
						(in)	Visual	Vacuum
LLDPE S/S	77.83	24	95	24.2	175	0.701	PASS	PASS

General Test Notes: Test was conducted using a 10" diameter cell. The 80 mil smooth/smooth LLDPE liner was placed on top of 3.5 inches of underliner soil, then covered with approximately 6.0 inches of overliner material. Per specifications, two 1/2" rock protrusions were placed in the underliner soil. Approximately 20 rocks were hand placed with points downward on the liner prior to placement of remaining overliner material. A hydraulic jack was used to apply a load of 175 psi to the sample over a period of 17.6 hours. The load was maintained for 24 hours. Dial gages were used to monitor deformation of the sample. At the conclusion of the test, the liner was inspected and tested for punctures both visually and by application of a vacuum. The vacuum pressure was approximately 450 mmHG.

Liner observations: No punctures were present but several dimples and scratches.

Underliner was remolded to 94.7% of maximum dry density at optimum moisture. Overliner was loosely placed and slightly tamped.

> Date: 7/7/06 Tech: MS Review: MB

### **Liner Load Testing Photo Log**



Figure 1 - Clay liner with rock protrusions, pre-test.



Figure 2 – 2.0 mm LLDPE geomembrane, pre-test.

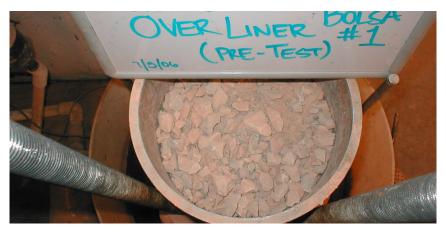



Figure 3 – Overliner (Bolsa #1), pre-test.

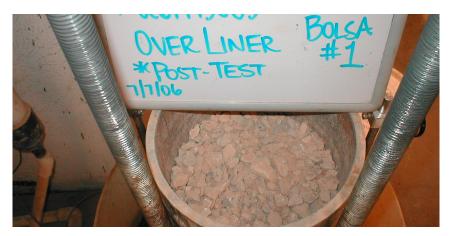



Figure 4 – Overliner (Bolsa #1), post-test.

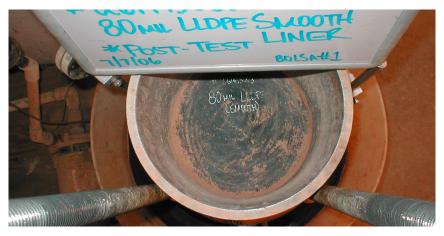



Figure 5 – 2.0 mm LLDPE, post-test.



Figure 6 – Clay liner, post-test.



Figure 7 – 2.0 mm LLDPE, visual inspection.

K-2-3

#### **GEOMEMBRANE LINER LOAD TEST SUMMARY**

JOB NAME:	PROJECT	Ŧ <i>Z</i>	
JOB NUMBER:	<b>:</b>		
DATE:	7/10/2006		
Underliner (Bed	lding) Source:	Soil Liner	
Underliner Classi	ification:	CL	Atterberg Limits: LL-33, PL-23, PI-10
Maximum Dry Density (pcf):		97.9	Optimum Moisture: 23.7
Overliner Mater	rial Source:	Bolsa #2	
Overliner Classifi	ication:	GP	Atterberg Limits:
Dry Density (pcf):		94.0	
Geosynthetic			
Manufacturer/S	upplier:	GSE	

Liner Type	Ave. Liner Thickness (mls)	Duration of Test (hrs.)	Underliner Compaction %	Moisture %	Load Applied (psi)	Change in total sample height	<b>Test Results</b>	
						(in)	Visual	Vacuum
LLDPE S/S	80.17	24	95	23.7	175	0.566	PASS	PASS

General Test Notes: Test was conducted using a 10" diameter cell. The 80 mil smooth/smooth LLDPE liner was placed on top of 3.5 inches of underliner soil, then covered with approximately 6.2 inches of overliner material. Per specifications, two 1/2" rock protrusions were placed in the underliner soil. Approximately 15 rocks were hand placed with points downward on the liner prior to placement of remaining overliner material. A hydraulic jack was used to apply a load of 175 psi to the sample over a period of 18.3 hours. The load was maintained for 24 hours. Dial gages were used to monitor deformation of the sample. At the conclusion of the test, the liner was inspected and tested for punctures both visually and by application of a vacuum. The vacuum pressure was approximately 450 mmHG.

Liner observations: No punctures were present but several dimples and scratches.

Underliner was remolded to 95.1% of maximum dry density at optimum moisture. Overliner was loosely placed and slightly tamped.

> Date: 7/12/06 Tech: MS Review: MB

### **Liner Load Testing Photo Log**



Figure 1 – Clay liner with rock protrusions, pre-test.



Figure 2 – 2.0 mm LLDPE geomembrane, pre-test.



Figure 3 – Overliner (Bolsa #2), pre-test.

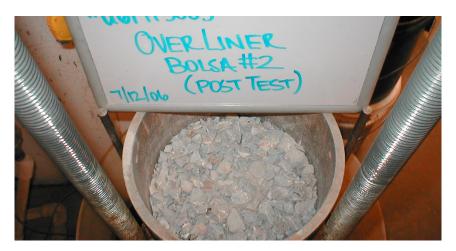



Figure 4 – Overliner (Bolsa #2), post-test.



Figure 5 – 2.0 mm LLDPE, post-test.

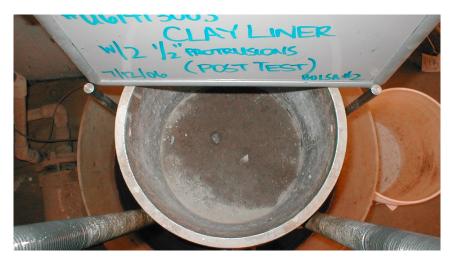



Figure 6 – Clay liner, post-test.



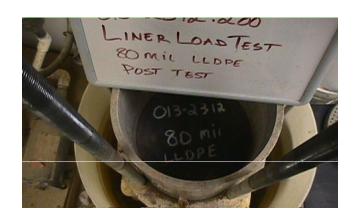
Figure 7 – 2.0 mm LLDPE, visual inspection.

## APPENDIX K-3 PROJECT #3 LINER LOAD TESTING

#### PROJECT #3

#### LINER LOAD TESTING

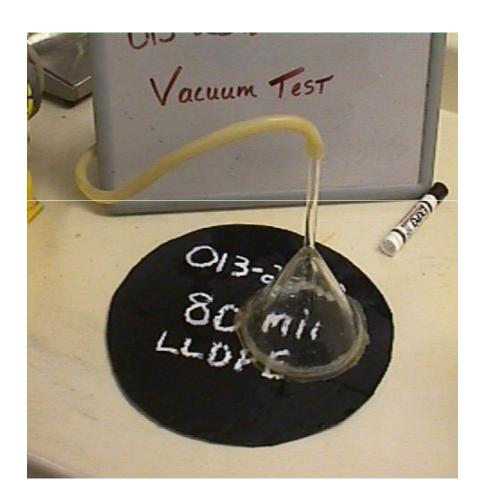
	MOISTURE DENSITY % pcf		RESULT	Starting Sample Height (in)	CHANGE IN HEIGHT (in)			Final Sample Height (in)
Test #1		•		3 - ( )	50 psi		350 psi	3 ( )
4.0 inches Liner Bedding Soil - GA1-TP-30 80-mil LLDPE geomembrane	8.9	123.0	PASS	10.785	0.173	0.492	0.789	9.996
6.5 inches (14997.0g) Drain Cover Fill $-1$ $^{1}/_{2}$ "	0.1							
Test #2 4.0 inches of Liner Bedding Soil - GA-1-TP-33 60-mil LLDPE geomembrane 4.0 inches (7863.8 g) Drain Cover Fill -1 1/2" 80-mil LLDPE geomembrane 3.5 inches (7182g) Drain Cover Fill -1 1/2"	10.6 0.1 0.1	120.3	PASS PASS	11.396	0.385	0.716	1.120	10.278
Test #3 4 inches of Liner Bedding Soil - GA-1-TP-33 80-mil LLDPE geomembrane 4.5 inches (9535.3 g) Drain Cover Fill -1 1/2" 100-mil LLDPE geomembrane 3.0 inches (6367.1g) Drain Cover Fill -1 1/2"	10.8 0.1 0.1	120.2	PASS PASS	11.595	0.229	0.549	0.939	10.656


K-3-1

## Liner Load Test #1 Load Testing



# Liner Load Test #1 Post-Test








**Golder Associates** 

# Liner Load Test #1 Vacuum Testing



K-3-2

## Liner Load Test #2 Sample Set-Up









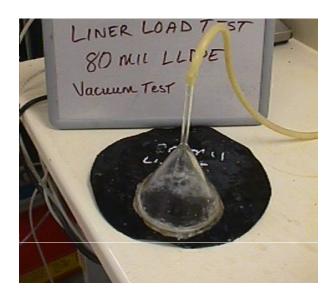
**Golder Associates** 

## Liner Load Test #2 Load Testing



# Liner Load Test #2 Post-Test










**Golder Associates** 

## Liner Load Test #2 Vacuum Testing



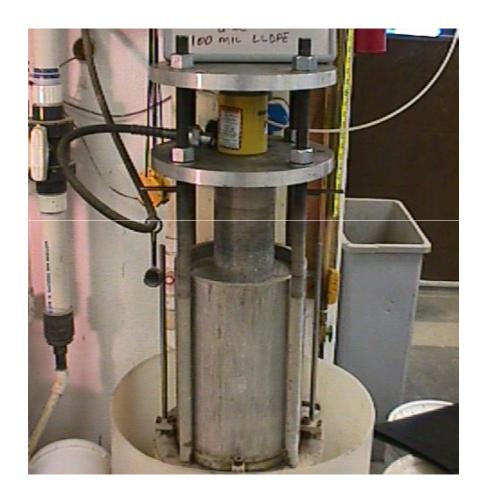




**Golder Associates** 

K-3-3

## Liner Load Test #3 Sample Set-Up







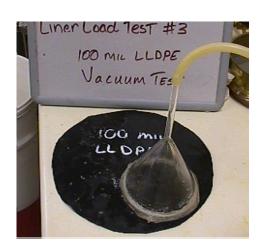


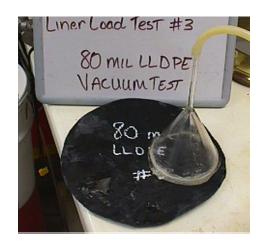

## Liner Load Test #3 Load Testing



# Liner Load Test #3 Post-Test








**Golder Associates** 

# Liner Load Test #3 Vacuum Testing









**Golder Associates**